TY - GEN
T1 - Large-scale additive manufacturing of highly exothermic reactive polymer systems
AU - Romberg, Stian K.
AU - Hershey, Christopher J.
AU - Lindahl, John M.
AU - Carter, William
AU - Compton, Brett G.
AU - Kunc, Vlastimil
N1 - Publisher Copyright:
© 2019 Soc. for the Advancement of Material and Process Engineering. All rights reserved.
PY - 2019
Y1 - 2019
N2 - Additive manufacturing (AM) of reactive polymer systems involves the deposition of materials at room temperature that either cure during printing through a chemically initiated reaction or require thermal initiation after printing. This presentation focuses on large-scale AM of chemically initiated thermosetting resins to characterize the effects of heat generation, temperature-dependent viscoelasticity, and crosslinking on the printing process. Real-time tracking of both temperature and cure fronts during the build process were investigated using infrared (IR) and optical vision systems in combination with selected material dyes. Heat generation within the previously-deposited layers was observed to cause significant reduction in the storage modulus (G’) and viscosity of newly-deposited layers, resulting in bead instabilities and failure of the print. Quantitative experimental observations on thin-wall structures suggest strategies for mitigating this failure mode through selection of print parameters and tailoring of viscoelastic properties of the feedstock resin.
AB - Additive manufacturing (AM) of reactive polymer systems involves the deposition of materials at room temperature that either cure during printing through a chemically initiated reaction or require thermal initiation after printing. This presentation focuses on large-scale AM of chemically initiated thermosetting resins to characterize the effects of heat generation, temperature-dependent viscoelasticity, and crosslinking on the printing process. Real-time tracking of both temperature and cure fronts during the build process were investigated using infrared (IR) and optical vision systems in combination with selected material dyes. Heat generation within the previously-deposited layers was observed to cause significant reduction in the storage modulus (G’) and viscosity of newly-deposited layers, resulting in bead instabilities and failure of the print. Quantitative experimental observations on thin-wall structures suggest strategies for mitigating this failure mode through selection of print parameters and tailoring of viscoelastic properties of the feedstock resin.
UR - http://www.scopus.com/inward/record.url?scp=85068767882&partnerID=8YFLogxK
U2 - 10.33599/nasampe/s.19.1616
DO - 10.33599/nasampe/s.19.1616
M3 - Conference contribution
AN - SCOPUS:85068767882
T3 - International SAMPE Technical Conference
BT - SAMPE Conference and Exhibition
A2 - Ahlstrom, Kevin
A2 - Anderson, Jacob Preston
A2 - Beckwith, Scott
A2 - Becnel, Andrew Craig
A2 - Biermann, Paul Joseph
A2 - Buchholz, Matt
A2 - Cates, Elizabeth
A2 - Gardner, Brian
A2 - Harris, Jim
A2 - Knight, Michael J.
A2 - Reyes-Villanueva, German
A2 - Scarborough, Stephen E.
A2 - Sears, Phil
A2 - Thomas, James
A2 - Thostenson, Erik T.
PB - Soc. for the Advancement of Material and Process Engineering
T2 - SAMPE 2019 Conference and Exhibition
Y2 - 20 May 2019 through 23 May 2019
ER -