Large language model evaluation for high-performance computing software development

Research output: Contribution to journalArticlepeer-review

Abstract

We apply AI-assisted large language model (LLM) capabilities of GPT-3 targeting high-performance computing (HPC) kernels for (i) code generation, and (ii) auto-parallelization of serial code in C ++, Fortran, Python and Julia. Our scope includes the following fundamental numerical kernels: AXPY, GEMV, GEMM, SpMV, Jacobi Stencil, and CG, and language/programming models: (1) C++ (e.g., OpenMP [including offload], OpenACC, Kokkos, SyCL, CUDA, and HIP), (2) Fortran (e.g., OpenMP [including offload] and OpenACC), (3) Python (e.g., numpy, Numba, cuPy, and pyCUDA), and (4) Julia (e.g., Threads, CUDA.jl, AMDGPU.jl, and KernelAbstractions.jl). Kernel implementations are generated using GitHub Copilot capabilities powered by the GPT-based OpenAI Codex available in Visual Studio Code given simple <kernel> + <programming model> + <optional hints> prompt variants. To quantify and compare the generated results, we propose a proficiency metric around the initial 10 suggestions given for each prompt. For auto-parallelization, we use ChatGPT interactively giving simple prompts as in a dialogue with another human including simple “prompt engineering” follow ups. Results suggest that correct outputs for C++ correlate with the adoption and maturity of programming models. For example, OpenMP and CUDA score really high, whereas HIP is still lacking. We found that prompts from either a targeted language such as Fortran or the more general-purpose Python can benefit from adding language keywords, while Julia prompts perform acceptably well for its Threads and CUDA.jl programming models. We expect to provide an initial quantifiable point of reference for code generation in each programming model using a state-of-the-art LLM. Overall, understanding the convergence of LLMs, AI, and HPC is crucial due to its rapidly evolving nature and how it is redefining human-computer interactions.

Original languageEnglish
Article numbere8269
JournalConcurrency and Computation: Practice and Experience
Volume36
Issue number26
DOIs
StatePublished - Nov 30 2024

Funding

This work is partly funded by Bluestone, an X-Stack project in the DOE Advanced Scientific Computing Office with program manager Hal Finkel. This material is based upon work by the RAPIDS Institute, supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research (ASCR), and Scientific Discovery through Advanced Computing (SciDAC) program. This work is partly funded by the DOE ASCR S4PST and PESO projects, part of the Consortium for the Advancement of Scientific Software (CASS).

FundersFunder number
Advanced Scientific Computing Research
U.S. Department of Energy
Office of Science
DOE ASCR S4PST
DOE Advanced Scientific Computing Office

    Keywords

    • GPT
    • auto-parallelization
    • code generation
    • high-performance computing
    • large language model
    • programming models

    Fingerprint

    Dive into the research topics of 'Large language model evaluation for high-performance computing software development'. Together they form a unique fingerprint.

    Cite this