Abstract
We apply AI-assisted large language model (LLM) capabilities of GPT-3 targeting high-performance computing (HPC) kernels for (i) code generation, and (ii) auto-parallelization of serial code in C ++, Fortran, Python and Julia. Our scope includes the following fundamental numerical kernels: AXPY, GEMV, GEMM, SpMV, Jacobi Stencil, and CG, and language/programming models: (1) C++ (e.g., OpenMP [including offload], OpenACC, Kokkos, SyCL, CUDA, and HIP), (2) Fortran (e.g., OpenMP [including offload] and OpenACC), (3) Python (e.g., numpy, Numba, cuPy, and pyCUDA), and (4) Julia (e.g., Threads, CUDA.jl, AMDGPU.jl, and KernelAbstractions.jl). Kernel implementations are generated using GitHub Copilot capabilities powered by the GPT-based OpenAI Codex available in Visual Studio Code given simple <kernel> + <programming model> + <optional hints> prompt variants. To quantify and compare the generated results, we propose a proficiency metric around the initial 10 suggestions given for each prompt. For auto-parallelization, we use ChatGPT interactively giving simple prompts as in a dialogue with another human including simple “prompt engineering” follow ups. Results suggest that correct outputs for C++ correlate with the adoption and maturity of programming models. For example, OpenMP and CUDA score really high, whereas HIP is still lacking. We found that prompts from either a targeted language such as Fortran or the more general-purpose Python can benefit from adding language keywords, while Julia prompts perform acceptably well for its Threads and CUDA.jl programming models. We expect to provide an initial quantifiable point of reference for code generation in each programming model using a state-of-the-art LLM. Overall, understanding the convergence of LLMs, AI, and HPC is crucial due to its rapidly evolving nature and how it is redefining human-computer interactions.
Original language | English |
---|---|
Article number | e8269 |
Journal | Concurrency and Computation: Practice and Experience |
Volume | 36 |
Issue number | 26 |
DOIs | |
State | Published - Nov 30 2024 |
Funding
This work is partly funded by Bluestone, an X-Stack project in the DOE Advanced Scientific Computing Office with program manager Hal Finkel. This material is based upon work by the RAPIDS Institute, supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research (ASCR), and Scientific Discovery through Advanced Computing (SciDAC) program. This work is partly funded by the DOE ASCR S4PST and PESO projects, part of the Consortium for the Advancement of Scientific Software (CASS).
Funders | Funder number |
---|---|
Advanced Scientific Computing Research | |
U.S. Department of Energy | |
Office of Science | |
DOE ASCR S4PST | |
DOE Advanced Scientific Computing Office |
Keywords
- GPT
- auto-parallelization
- code generation
- high-performance computing
- large language model
- programming models