Label-free quantitative proteomics for the extremely thermophilic bacterium caldicellulosiruptor obsidiansis reveal distinct abundance patterns upon growth on cellobiose, crystalline cellulose, and switchgrass

Adriane Lochner, Richard J. Giannone, Martin Keller, Garabed Antranikian, David E. Graham, Robert L. Hettich

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

Mass spectrometric analysis of Caldicellulosiruptor obsidiansis cultures grown on four different carbon sources identified 65% of the cells' predicted proteins in cell lysates and supernatants. Biological and technical replication together with sophisticated statistical analysis were used to reliably quantify protein abundances and their changes as a function of carbon source. Extracellular, multifunctional glycosidases were significantly more abundant on cellobiose than on the crystalline cellulose substrates Avicel and filter paper, indicating either disaccharide induction or constitutive protein expression. Highly abundant flagellar, chemotaxis, and pilus proteins were detected during growth on insoluble substrates, suggesting motility or specific substrate attachment. The highly abundant extracellular binding protein COB47-0549 together with the COB47-1616 ATPase might comprise the primary ABC-transport system for cellooligosaccharides, while COB47-0096 and COB47-0097 could facilitate monosaccharide uptake. Oligosaccharide degradation can occur either via extracellular hydrolysis by a GH1 β-glycosidase or by intracellular phosphorolysis using two GH94 enzymes. When C. obsidiansis was grown on switchgrass, the abundance of hemicellulases (including GH3, GH5, GH51, and GH67 enzymes) and certain sugar transporters increased significantly. Cultivation on biomass also caused a concerted increase in cytosolic enzymes for xylose and arabinose fermentation.

Original languageEnglish
Pages (from-to)5302-5314
Number of pages13
JournalJournal of Proteome Research
Volume10
Issue number12
DOIs
StatePublished - Dec 2 2011

Keywords

  • bioenergy research
  • microbial cellulose degradation
  • microbial proteomics
  • quantitative proteomics
  • thermophilic bacteria

Fingerprint

Dive into the research topics of 'Label-free quantitative proteomics for the extremely thermophilic bacterium caldicellulosiruptor obsidiansis reveal distinct abundance patterns upon growth on cellobiose, crystalline cellulose, and switchgrass'. Together they form a unique fingerprint.

Cite this