TY - JOUR
T1 - Label-free quantitative proteomics for the extremely thermophilic bacterium caldicellulosiruptor obsidiansis reveal distinct abundance patterns upon growth on cellobiose, crystalline cellulose, and switchgrass
AU - Lochner, Adriane
AU - Giannone, Richard J.
AU - Keller, Martin
AU - Antranikian, Garabed
AU - Graham, David E.
AU - Hettich, Robert L.
PY - 2011/12/2
Y1 - 2011/12/2
N2 - Mass spectrometric analysis of Caldicellulosiruptor obsidiansis cultures grown on four different carbon sources identified 65% of the cells' predicted proteins in cell lysates and supernatants. Biological and technical replication together with sophisticated statistical analysis were used to reliably quantify protein abundances and their changes as a function of carbon source. Extracellular, multifunctional glycosidases were significantly more abundant on cellobiose than on the crystalline cellulose substrates Avicel and filter paper, indicating either disaccharide induction or constitutive protein expression. Highly abundant flagellar, chemotaxis, and pilus proteins were detected during growth on insoluble substrates, suggesting motility or specific substrate attachment. The highly abundant extracellular binding protein COB47-0549 together with the COB47-1616 ATPase might comprise the primary ABC-transport system for cellooligosaccharides, while COB47-0096 and COB47-0097 could facilitate monosaccharide uptake. Oligosaccharide degradation can occur either via extracellular hydrolysis by a GH1 β-glycosidase or by intracellular phosphorolysis using two GH94 enzymes. When C. obsidiansis was grown on switchgrass, the abundance of hemicellulases (including GH3, GH5, GH51, and GH67 enzymes) and certain sugar transporters increased significantly. Cultivation on biomass also caused a concerted increase in cytosolic enzymes for xylose and arabinose fermentation.
AB - Mass spectrometric analysis of Caldicellulosiruptor obsidiansis cultures grown on four different carbon sources identified 65% of the cells' predicted proteins in cell lysates and supernatants. Biological and technical replication together with sophisticated statistical analysis were used to reliably quantify protein abundances and their changes as a function of carbon source. Extracellular, multifunctional glycosidases were significantly more abundant on cellobiose than on the crystalline cellulose substrates Avicel and filter paper, indicating either disaccharide induction or constitutive protein expression. Highly abundant flagellar, chemotaxis, and pilus proteins were detected during growth on insoluble substrates, suggesting motility or specific substrate attachment. The highly abundant extracellular binding protein COB47-0549 together with the COB47-1616 ATPase might comprise the primary ABC-transport system for cellooligosaccharides, while COB47-0096 and COB47-0097 could facilitate monosaccharide uptake. Oligosaccharide degradation can occur either via extracellular hydrolysis by a GH1 β-glycosidase or by intracellular phosphorolysis using two GH94 enzymes. When C. obsidiansis was grown on switchgrass, the abundance of hemicellulases (including GH3, GH5, GH51, and GH67 enzymes) and certain sugar transporters increased significantly. Cultivation on biomass also caused a concerted increase in cytosolic enzymes for xylose and arabinose fermentation.
KW - bioenergy research
KW - microbial cellulose degradation
KW - microbial proteomics
KW - quantitative proteomics
KW - thermophilic bacteria
UR - http://www.scopus.com/inward/record.url?scp=82755184968&partnerID=8YFLogxK
U2 - 10.1021/pr200536j
DO - 10.1021/pr200536j
M3 - Article
C2 - 21988591
AN - SCOPUS:82755184968
SN - 1535-3893
VL - 10
SP - 5302
EP - 5314
JO - Journal of Proteome Research
JF - Journal of Proteome Research
IS - 12
ER -