Abstract
Krylov subspace recycling is a powerful tool when solving a long series of large, sparse linear systems that change only slowly over time. In PDE constrained shape optimization, these series appear naturally, as typically hundreds or thousands of optimization steps are needed with only small changes in the geometry. In this setting, however, applying Krylov subspace recycling can be a difficult task. As the geometry evolves, in general, so does the finite element mesh defined on or representing this geometry, including the numbers of nodes and elements and element connectivity. This is especially the case if re-meshing techniques are used. As a result, the number of algebraic degrees of freedom in the system changes, and in general the linear system matrices resulting from the finite element discretization change size from one optimization step to the next. Changes in the mesh connectivity also lead to structural changes in the matrices. In the case of re-meshing, even if the geometry changes only a little, the corresponding mesh might differ substantially from the previous one. Obviously, this prevents any straightforward mapping of the approximate invariant subspace of the linear system matrix (the focus of recycling in this paper) from one optimization step to the next; similar problems arise for other selected subspaces. In this paper, we present an algorithm to map an approximate invariant subspace of the linear system matrix for the previous optimization step to an approximate invariant subspace of the linear system matrix for the current optimization step, for general meshes. This is achieved by exploiting the map from coefficient vectors to finite element functions on the mesh, combined with interpolation or approximation of functions on the finite element mesh. We demonstrate the effectiveness of our approach numerically with several proof of concept studies for a specific meshing technique.
Original language | English |
---|---|
Article number | 114222 |
Journal | Computer Methods in Applied Mechanics and Engineering |
Volume | 391 |
DOIs | |
State | Published - Mar 1 2022 |
Externally published | Yes |
Funding
This work was supported by the federal ministry of research and education of Germany (BMBF, grant-no: 05M18PXA ) as a part of the GIVEN consortium. This material is based upon work supported by the National Science Foundation under Grant No. 1720305 . Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.
Funders | Funder number |
---|---|
federal ministry of research and education of Germany | |
National Science Foundation | 1720305 |
U.S. Department of Energy | |
National Nuclear Security Administration | DE-NA0003525 |
Bundesministerium für Bildung und Forschung | 05M18PXA |
Keywords
- Computations on changing geometries and structures
- Krylov subspace recycling
- Recycling CG
- Shape optimization