Abstract
Concrete additive manufacturing (AM) is a growing field of research. However, on-site, large-scale concrete additive manufacturing requires motion platforms that are difficult to implement with conventional rigid-link robotic systems. This article presents a new kinematic arrangement for a deployable cable-driven robot intended for on-site AM. The kinematics of this robot are examined to determine if they meet the requirements for this application, the wrench feasible workspace (WFW) is examined, and the physical implementation of a prototype is also presented. Data collected from the physical implementation of the proposed system are analyzed, and the results support its suitability for the intended application. The success of this system demonstrates that this kinematic arrangement is promising for future deployable AM systems.
Original language | English |
---|---|
Article number | 021010 |
Journal | Journal of Mechanisms and Robotics |
Volume | 14 |
Issue number | 2 |
DOIs | |
State | Published - Apr 2022 |
Funding
This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/ downloads/doe-public-access-plan). This material is based on work supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of Advanced Manufacturing (Contract Number DE-AC05-00OR22725).
Keywords
- Additive manufacturing
- Cable-driven mechanisms
- Parallel platforms
- Robot design