Abstract
The High Burnup Spent Fuel Data Project, sponsored by the U.S. Department of Energy Office of Nuclear Energy, is focused on understanding the effects of long-term storage and transportation on high burnup (HBU) (>45 GW days per tonne uranium) light water reactor fuel. The project includes 32 HBU spent nuclear fuel (SNF) assemblies (the project assemblies) that are stored in a typical independent spent fuel storage installation (ISFSI) and 25 “sister rods”—9 SNF rods that were removed from the fuel assemblies prior to insertion to the ISFSI and 16 SNF rods removed from similar HBU assemblies. The sister rods provide a baseline of the condition of the HBU rods before loading, drying, and long-term dry storage. The project assemblies will be inspected after 10 years, and the physical state of the stored rods will be compared with the condition of the sister rods to identify any changes in physical properties during the dry storage period. This work focuses on key results from the nondestructive postirradiation examinations of the sister rods and summarizes the results of detailed visual examinations, gamma scans, dimensional measurements, and eddy current liftoff measurements of the combined Chalk River unidentified deposits and oxide layer on the waterside surface of the rod. The data are used to calculate fuel rod and pellet stack growth rates, estimated remaining fuel rod plenum volumes, and the percentage change in fuel rod cladding diameter.
Original language | English |
---|---|
Pages (from-to) | 884-902 |
Number of pages | 19 |
Journal | Nuclear Science and Engineering |
Volume | 193 |
Issue number | 8 |
DOIs | |
State | Published - Aug 3 2019 |
Funding
Abstract — The High Burnup Spent Fuel Data Project, sponsored by the U.S. Department of Energy Office of Nuclear Energy, is focused on understanding the effects of long-term storage and transportation on high burnup (HBU) (>45 GW days per tonne uranium) light water reactor fuel. The project includes 32 HBU spent nuclear fuel (SNF) assemblies (the project assemblies) that are stored in a typical independent spent fuel storage installation (ISFSI) and 25 “sister rods”—9 SNF rods that were removed from the fuel assemblies prior to insertion to the ISFSI and 16 SNF rods removed from similar HBU assemblies. The sister rods provide a baseline of the condition of the HBU rods before loading, drying, and long-term dry storage. The project assemblies will be inspected after 10 years, and the physical state of the stored rods will be compared with the condition of the sister rods to identify any changes in physical properties during the dry storage period. This work focuses on key results from the nondestructive postirradiation examinations of the sister rods and summarizes the results of detailed visual examinations, gamma scans, dimensional measurements, and eddy current liftoff measurements of the combined Chalk River unidentified deposits and oxide layer on the waterside surface of the rod. The data are used to calculate fuel rod and pellet stack growth rates, estimated remaining fuel rod plenum volumes, and the percentage change in fuel rod cladding diameter. This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy (DOE). The U.S. government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). This work was also supported by DOE [contract AF5861020].
Funders | Funder number |
---|---|
DOE Public Access Plan | |
HBU | |
UT-Battelle | DE-AC05-00OR22725 |
U.S. Department of Energy | AF5861020 |
Office of Nuclear Energy |
Keywords
- Sister rods
- postirradiation examination
- spent nuclear fuel