Abstract
Internet of Things (IoT) is becoming more pervasive in many installations, including homes, manufacturing plants, and industrial facilities of all kinds. The data that IoT produces is a reflection of usual behavior such as daily routines and scheduled tasks, but also from unexpected behavior due to unintentional or undesirable abnormalities. Here, we focus on achieving coordinated intelligence about normal and abnormal phenomena from multiple sensors that are geographically co-located in close proximity, monitoring and controlling a set of co-located devices. Given a set of co-located sensors, we seek an intelligent approach that would automatically determine the 'normal' patterns of behaviors among the correlated sensors. After normal behavior is extracted, later monitoring should detect any deviant variations over time. An example application is an entry monitoring and alert system for facilities such as nuclear reactors, where badge readers, door locks, lights, weight trackers and other co-located sensors at the entry point are collectively tracked. To address this problem, we identify the possible solution approach that can be used to solve its different variants. The implemented model is developed as a combination of rules and Markov Chain methods.
Original language | English |
---|---|
Title of host publication | Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019 |
Editors | Chaitanya Baru, Jun Huan, Latifur Khan, Xiaohua Tony Hu, Ronay Ak, Yuanyuan Tian, Roger Barga, Carlo Zaniolo, Kisung Lee, Yanfang Fanny Ye |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 4169-4174 |
Number of pages | 6 |
ISBN (Electronic) | 9781728108582 |
DOIs | |
State | Published - Dec 2019 |
Event | 2019 IEEE International Conference on Big Data, Big Data 2019 - Los Angeles, United States Duration: Dec 9 2019 → Dec 12 2019 |
Publication series
Name | Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019 |
---|
Conference
Conference | 2019 IEEE International Conference on Big Data, Big Data 2019 |
---|---|
Country/Territory | United States |
City | Los Angeles |
Period | 12/9/19 → 12/12/19 |
Funding
This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
Keywords
- IoT
- Markov Chain
- abnormality detection
- pattern detection
- security
- sensors