Irreversible thermodynamics

David M. Rogers, Susan B. Rempe

Research output: Contribution to journalConference articlepeer-review

4 Scopus citations

Abstract

We present a maximum-entropy theory of mesoscopic kinetics. The theory gives fully nonlinear nonequilibrium thermodynamic relationships and has no explicit requirement for either microscopic bath variables, an equilibrium energy, or an equilibrium partition function. The entropy maximization process is instead carried out over transition probability distributions with constraints on particle position and velocity updates. The Lagrange multipliers for these constraints express the instantaneous temperature and pressure of external (or microscopic) thermostatic driving systems, with which the distinguished system may or may not eventually reach equilibrium. We show that the analogues of the Gibbs-Maxwell relations and free energy perturbation techniques carry over to fluctuation-dissipation theorems and nonequilibrium ensemble reweighting techniques as should be expected. The result is a fully time-dependent, non-local description of a nonequilibrium ensemble coupled to reservoirs at possibly time-varying thermostatic or mechanical states. We also show that the thermodynamic entropy production extends the generalized fluctuation theorem through the addition of an instantaneous information entropy term for the end-points, leading to a concise statement of the second law of thermodynamics.

Original languageEnglish
Article number012014
JournalJournal of Physics: Conference Series
Volume402
Issue number1
DOIs
StatePublished - 2012
Externally publishedYes
Event23rd Conference on Computational Physics, CCP 2011 - Gatlinburg, TN, United States
Duration: Oct 30 2012Nov 3 2012

Fingerprint

Dive into the research topics of 'Irreversible thermodynamics'. Together they form a unique fingerprint.

Cite this