Abstract
A new approach to the spectroscopy of highly excited vibrational states of polyatomic molecules has been elaborated. The molecules of CrO2Cl2 were prepared in states with a vibrational energy of the ground electronic term A1 of ≈ 19000 cm-1 by means of internal conversion of electronic energy from the electronic state B1 excited by laser radiation. The spectroscopy of the vibrationally excited molecules has been carried out in the region of the ν6 and ν1 bands with diode and CO2 lasers. The fwhm of the obtained spectrum was ≈ 15 cm-1. The intermode interaction in CrO2Cl2 has been theoretically analyzed, and the calculated spectrum compared with that measured experimentally. The time evolution of the spectrum of vibrationally excited CrO2Cl2 molecules has been studied. The average energy transferred per one collision with unexcited CrO2Cl2 molecules was equal to 〈δE〉 ≈ 1200 cm-1.
Original language | English |
---|---|
Pages (from-to) | 131-149 |
Number of pages | 19 |
Journal | Chemical Physics |
Volume | 106 |
Issue number | 1 |
DOIs | |
State | Published - Jul 1 1986 |
Externally published | Yes |