TY - JOUR
T1 - Ionic Liquid-Glycol Mixtures for Direct Air Capture of CO2
T2 - Decreased Viscosity and Mitigation of Evaporation Via Encapsulation
AU - Taylor, Cameron D.L.
AU - Klemm, Aidan
AU - Al-Mahbobi, Luma
AU - Bradford, B. Jack
AU - Gurkan, Burcu
AU - Pentzer, Emily B.
N1 - Publisher Copyright:
© 2024 The Authors. Published by American Chemical Society.
PY - 2024/5/20
Y1 - 2024/5/20
N2 - Herein we address the efficiency of the CO2 sorption of ionic liquids (IL) with hydrogen bond donors (e.g., glycols) added as viscosity modifiers and the impact of encapsulating them to limit sorbent evaporation under conditions for the direct air capture of CO2. Ethylene glycol, propylene glycol, 1,3-propanediol, and diethylene glycol were added to three different ILs: 1-ethyl-3-methylimidazolium 2-cyanopyrrolide ([EMIM][2-CNpyr]), 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]), and 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]). Incorporation of the glycols decreased viscosity by an average of 51% compared to bulk IL. After encapsulation of the liquid mixtures using a soft template approach, thermogravimetric analysis revealed average reductions in volatility of 36 and 40% compared to the unencapsulated liquid mixtures, based on 1 h isothermal experiments at 25 and 55 °C, respectively. The encapsulated mixtures of [EMIM][2-CNpyr]/1,3-propanediol and [EMIM][2-CNpyr]/diethylene glycol exhibited the lowest volatility (0.0019 and 0.0002 mmol/h at 25 °C, respectively) and were further evaluated as CO2 absorption/desorption materials. Based on the capacity determined from breakthrough measurements, [EMIM][2-CNpyr]/1,3-propanediol had a lower transport limited absorption rate for CO2 sorption compared to [EMIM][2-CNpyr]/diethylene glycol with 0.08 and 0.03 mol CO2/kg sorbent, respectively; however, [EMIM][2-CNpyr]/diethylene glycol capsules exhibited higher absorptions capacity at ∼500 ppm of CO2 (0.66 compared to 0.47 mol of CO2/kg sorbent for [EMIM][2-CNpyr]/1,3-propanediol). These results show that glycols can be used to not only reduce IL viscosity while increasing physisorption sites for CO2 sorption, but also that encapsulation can be utilized to mitigate evaporation of volatile viscosity modifiers.
AB - Herein we address the efficiency of the CO2 sorption of ionic liquids (IL) with hydrogen bond donors (e.g., glycols) added as viscosity modifiers and the impact of encapsulating them to limit sorbent evaporation under conditions for the direct air capture of CO2. Ethylene glycol, propylene glycol, 1,3-propanediol, and diethylene glycol were added to three different ILs: 1-ethyl-3-methylimidazolium 2-cyanopyrrolide ([EMIM][2-CNpyr]), 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]), and 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]). Incorporation of the glycols decreased viscosity by an average of 51% compared to bulk IL. After encapsulation of the liquid mixtures using a soft template approach, thermogravimetric analysis revealed average reductions in volatility of 36 and 40% compared to the unencapsulated liquid mixtures, based on 1 h isothermal experiments at 25 and 55 °C, respectively. The encapsulated mixtures of [EMIM][2-CNpyr]/1,3-propanediol and [EMIM][2-CNpyr]/diethylene glycol exhibited the lowest volatility (0.0019 and 0.0002 mmol/h at 25 °C, respectively) and were further evaluated as CO2 absorption/desorption materials. Based on the capacity determined from breakthrough measurements, [EMIM][2-CNpyr]/1,3-propanediol had a lower transport limited absorption rate for CO2 sorption compared to [EMIM][2-CNpyr]/diethylene glycol with 0.08 and 0.03 mol CO2/kg sorbent, respectively; however, [EMIM][2-CNpyr]/diethylene glycol capsules exhibited higher absorptions capacity at ∼500 ppm of CO2 (0.66 compared to 0.47 mol of CO2/kg sorbent for [EMIM][2-CNpyr]/1,3-propanediol). These results show that glycols can be used to not only reduce IL viscosity while increasing physisorption sites for CO2 sorption, but also that encapsulation can be utilized to mitigate evaporation of volatile viscosity modifiers.
KW - CO sorbent encapsulation
KW - direct air capture
KW - ionic liquid
KW - viscosity reduction
KW - volatility reduction
UR - http://www.scopus.com/inward/record.url?scp=85192817478&partnerID=8YFLogxK
U2 - 10.1021/acssuschemeng.4c01265
DO - 10.1021/acssuschemeng.4c01265
M3 - Article
AN - SCOPUS:85192817478
SN - 2168-0485
VL - 12
SP - 7882
EP - 7893
JO - ACS Sustainable Chemistry and Engineering
JF - ACS Sustainable Chemistry and Engineering
IS - 20
ER -