Ionic conduction in cubic Na3TiP3O9N, a secondary Na-ion battery cathode with extremely low volume change

Jue Liu, Donghee Chang, Pamela Whitfield, Yuri Janssen, Xiqian Yu, Yongning Zhou, Jianming Bai, Jonathan Ko, Kyung Wan Nam, Lijun Wu, Yimei Zhu, Mikhail Feygenson, Glenn Amatucci, Anton Van Der Ven, Xiao Qing Yang, Peter Khalifah

Research output: Contribution to journalArticlepeer-review

68 Scopus citations

Abstract

It is demonstrated that Na ions are mobile at room temperature in the nitridophosphate compound Na3TiP3O9N, with a diffusion pathway that is calculated to be fully three-dimensional and isotropic. When used as a cathode in Na-ion batteries, Na3TiP 3O9N has an average voltage of 2.7 V vs Na+/Na and cycles with good reversibility through a mechanism that appears to be a single solid solution process without any intermediate plateaus. X-ray and neutron diffraction studies as well as first-principles calculations indicate that the volume change that occurs on Na-ion removal is only about 0.5%, a remarkably small volume change given the large ionic radius of Na+. Rietveld refinements indicate that the Na1 site is selectively depopulated during sodium removal. Furthermore, the refined displacement parameters support theoretical predictions that the lowest energy diffusion pathway incorporates the Na1 and Na3 sites while the Na2 site is relatively inaccessible. The measured room temperature ionic conductivity of Na3TiP 3O9N is substantial (4 × 10-7 S/cm), though both the strong temperature dependence of Na-ion thermal parameters and the observed activation energy of 0.54 eV suggest that much higher ionic conductivities can be achieved with minimal heating. Excellent thermal stability is observed for both pristine Na3TiP3O9N and desodiated Na2TiP3O9N, suggesting that this phase can serve as a safe Na-ion battery electrode. Moreover, it is expected that further optimization of the general cubic framework of Na 3TiP3O9N by chemical substitution will result in thermostable solid state electrolytes with isotropic conductivities that can function at temperatures near or just above room temperature.

Original languageEnglish
Pages (from-to)3295-3305
Number of pages11
JournalChemistry of Materials
Volume26
Issue number10
DOIs
StatePublished - May 27 2014
Externally publishedYes

Funding

FundersFunder number
Office of Basic Energy Sciences
U.S. Department of Energy

    Fingerprint

    Dive into the research topics of 'Ionic conduction in cubic Na3TiP3O9N, a secondary Na-ion battery cathode with extremely low volume change'. Together they form a unique fingerprint.

    Cite this