I/O load balancing for big data HPC applications

Arnab K. Paul, Arpit Goyal, Feiyi Wang, Sarp Oral, Ali R. Butt, Michael J. Brim, Sangeetha B. Srinivasa

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

20 Scopus citations

Abstract

High Performance Computing (HPC) big data problems require efficient distributed storage systems. However, at scale, such storage systems often experience load imbalance and resource contention due to two factors: the bursty nature of scientific application I/O; and the complex I/O path that is without centralized arbitration and control. For example, the extant Lustre parallel file system-that supports many HPC centers-comprises numerous components connected via custom network topologies, and serves varying demands of a large number of users and applications. Consequently, some storage servers can be more loaded than others, which creates bottlenecks and reduces overall application I/O performance. Existing solutions typically focus on per application load balancing, and thus are not as effective given their lack of a global view of the system. In this paper, we propose a data-driven approach to load balance the I/O servers at scale, targeted at Lustre deployments. To this end, we design a global mapper on Lustre Metadata Server, which gathers runtime statistics from key storage components on the I/O path, and applies Markov chain modeling and a minimum-cost maximum-flow algorithm to decide where data should be placed. Evaluation using a realistic system simulator and a real setup shows that our approach yields better load balancing, which in turn can improve end-to-end performance.

Original languageEnglish
Title of host publicationProceedings - 2017 IEEE International Conference on Big Data, Big Data 2017
EditorsJian-Yun Nie, Zoran Obradovic, Toyotaro Suzumura, Rumi Ghosh, Raghunath Nambiar, Chonggang Wang, Hui Zang, Ricardo Baeza-Yates, Ricardo Baeza-Yates, Xiaohua Hu, Jeremy Kepner, Alfredo Cuzzocrea, Jian Tang, Masashi Toyoda
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages233-242
Number of pages10
ISBN (Electronic)9781538627143
DOIs
StatePublished - Jul 1 2017
Event5th IEEE International Conference on Big Data, Big Data 2017 - Boston, United States
Duration: Dec 11 2017Dec 14 2017

Publication series

NameProceedings - 2017 IEEE International Conference on Big Data, Big Data 2017
Volume2018-January

Conference

Conference5th IEEE International Conference on Big Data, Big Data 2017
Country/TerritoryUnited States
CityBoston
Period12/11/1712/14/17

Funding

This research used resources of the Oak Ridge Leadership Computing Facility, located in the National Center for Computational Sciences at the Oak Ridge National Laboratory, which is supported by the Office of Science of the DOE under Contract DE-AC05-00OR22725. This work is also sponsored in part by the NSF under the grants: CNS-1565314, CNS-1405697, and CNS-1615411.

FundersFunder number
National Science FoundationCNS-1615411, CNS-1565314, CNS-1405697
U.S. Department of EnergyDE-AC05-00OR22725
Office of Science

    Fingerprint

    Dive into the research topics of 'I/O load balancing for big data HPC applications'. Together they form a unique fingerprint.

    Cite this