Investigation of the scuffing characteristics of candidate materials for heavy duty diesel fuel injectors

Jun Qu, John J. Truhan, Peter J. Blau

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

The objective of this study is to characterize and understand the evolutionary processes that produce changes in the friction and surface damage in materials for possible use as heavy duty diesel fuel injector plungers. This work has involved the development of test methods to impart reciprocating motion to various metals, ceramics, and coated specimens in the presence of diesel fuel-like fluids. Commercial and candidate plunger materials, including 52100 steel, zirconia, cermets (TiC in Ni3Al matrix), and TiN coatings, were evaluated on a crossed-cylinders-like scuffing test we call the 'pin-on-twin' geometry. Contacts were lubricated by on-highway #2 diesel and Jet A aviation fuels. Using friction-based criteria, the material ranking was in good agreement with field experience with actual injectors from the diesel engine industry. Zirconia and cermets exhibited promising scuffing resistance in both fuels. Scuffing generally became more severe in the Jet A fuel. Experimental results indicated that smoother surfaces that are required to sustain higher injection pressures could be more vulnerable to scuffing due to their thinner lubricant films. Material transfer was the major scuffing mechanism of zirconia, cermets, and TiN coatings against steel. Micro-scratches were also observed on the matrix material of cermets.

Original languageEnglish
Pages (from-to)381-390
Number of pages10
JournalTribology International
Volume38
Issue number4
DOIs
StatePublished - Apr 2005

Funding

The authors wish to thank L. Riester from ORNL for her help on nanoindentation. Research sponsored by the US Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technologies, under contract DE-AC05-00OR22725 with UT-Battelle LLC. J. Qu was supported in part by an appointment to the ORNL Postdoctoral Research Associates Program administered jointly by ORNL and ORISE.

Keywords

  • Fuel-lubricated
  • Scuffing detection
  • Scuffing resistance

Fingerprint

Dive into the research topics of 'Investigation of the scuffing characteristics of candidate materials for heavy duty diesel fuel injectors'. Together they form a unique fingerprint.

Cite this