TY - JOUR
T1 - Investigation of Point-Contact Strategies for CFD Simulations of Pebble-Bed Reactor Cores
AU - Goth, Nolan
AU - Nguyen, Thien
AU - Pointer, William David
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/8
Y1 - 2024/8
N2 - This study numerically investigated the effects of various contact strategies on the thermal hydraulic behavior within a structured bed of 100 explicitly modeled pebbles. Four contact strategies and two thermal hydraulic conditions were considered. The strategies to avoid contact singularities include decreasing the pebble diameter, increasing the pebble diameter, bridging the pebble surfaces near the contact region, and capping the pebble surfaces near the contact region. One strategy, Strategy 3a, which involves bridging with a cylinder equal to 10% of the pebble diameter, was selected as the baseline strategy because it addressed the contact singularity while minimizing the geometric changes that affect the bed porosity. The two thermal hydraulic conditions were full-power operation (Case 1) and pressurized loss of forced cooling or PLOFC (Case 2). Simulations of the conjugate heat transfer within the structured bed were performed using the Reynolds-averaged Navier–Stokes approach with the realizable k- (Formula presented.) turbulence model and two-layer all (Formula presented.) wall treatment. The thermal-fluid quantities of interest were compared between the contact strategies for each case. In Case 1, the hydraulic behavior was sensitive to the contact strategy, with large differences in the pressure drop (30%) and volume-average velocity (4%). The thermal behavior was not sensitive, with less than a 0.5% difference across the strategies. To better understand the separate effects of each heat transfer mode, Case 2 was divided into the following subcases: conduction (Case 2a); conduction/radiation (Case 2b); and conduction/radiation/convection (Case 2c). Case 2a represents an early phase of the PLOFC transient. Case 2b represents an intermediate phase of the PLOFC transient, with the pebble temperatures sufficiently high for the radiative heat transfer to be non-negligible. Case 2c represents a late phase of the PLOFC transient after the establishment of the natural circulation of the heat transfer fluid. For Case 2, large differences in the contact strategy were observed only in Case 2a with only conduction. The difference in the maximum pebble temperature was 23% in Case 2a, 2% in Case 2b, and 0.3% in Case 2c.
AB - This study numerically investigated the effects of various contact strategies on the thermal hydraulic behavior within a structured bed of 100 explicitly modeled pebbles. Four contact strategies and two thermal hydraulic conditions were considered. The strategies to avoid contact singularities include decreasing the pebble diameter, increasing the pebble diameter, bridging the pebble surfaces near the contact region, and capping the pebble surfaces near the contact region. One strategy, Strategy 3a, which involves bridging with a cylinder equal to 10% of the pebble diameter, was selected as the baseline strategy because it addressed the contact singularity while minimizing the geometric changes that affect the bed porosity. The two thermal hydraulic conditions were full-power operation (Case 1) and pressurized loss of forced cooling or PLOFC (Case 2). Simulations of the conjugate heat transfer within the structured bed were performed using the Reynolds-averaged Navier–Stokes approach with the realizable k- (Formula presented.) turbulence model and two-layer all (Formula presented.) wall treatment. The thermal-fluid quantities of interest were compared between the contact strategies for each case. In Case 1, the hydraulic behavior was sensitive to the contact strategy, with large differences in the pressure drop (30%) and volume-average velocity (4%). The thermal behavior was not sensitive, with less than a 0.5% difference across the strategies. To better understand the separate effects of each heat transfer mode, Case 2 was divided into the following subcases: conduction (Case 2a); conduction/radiation (Case 2b); and conduction/radiation/convection (Case 2c). Case 2a represents an early phase of the PLOFC transient. Case 2b represents an intermediate phase of the PLOFC transient, with the pebble temperatures sufficiently high for the radiative heat transfer to be non-negligible. Case 2c represents a late phase of the PLOFC transient after the establishment of the natural circulation of the heat transfer fluid. For Case 2, large differences in the contact strategy were observed only in Case 2a with only conduction. The difference in the maximum pebble temperature was 23% in Case 2a, 2% in Case 2b, and 0.3% in Case 2c.
KW - bed
KW - contact
KW - gas-cooled
KW - packed
KW - pebble
KW - reactor
KW - salt-cooled
KW - singularity
UR - http://www.scopus.com/inward/record.url?scp=85202436079&partnerID=8YFLogxK
U2 - 10.3390/app14167343
DO - 10.3390/app14167343
M3 - Article
AN - SCOPUS:85202436079
SN - 2076-3417
VL - 14
JO - Applied Sciences (Switzerland)
JF - Applied Sciences (Switzerland)
IS - 16
M1 - 7343
ER -