Abstract
Oxides employed in halide perovskite solar cells (PSCs) have already demonstrated to deliver enhanced stability, low cost, and the ease of fabrication required for the commercialization of the technology. The most stable PSCs configuration, the carbon-based hole transport layer-free PSC (HTL-free PSC), has demonstrated a stability of more than one year of continuous operation partially due to the dual presence of insulating oxide scaffolds and conductive oxides. Despite these advances, the stability of PSCs is still a concern and a strong limiting factor for their industrial implementation. The engineering of oxide interfaces functionalized with molecules (like self-assembly monolayers) or polymers results in the passivation of defects (traps), providing numerous advantages such as the elimination of hysteresis and the enhancement of solar cell efficiency. But most important is the beneficial effect of interfacial engineering on the lifetime and stability of PSCs. In this work, the authors provide a brief insight into the recent developments reported on the surface functionalization of oxide interfaces in PSCs with emphasis on the effect of device stability. This paper also discusses the different binding modes, their effect on defect passivation, band alignment or dipole formation, and how these parameters influence device lifetime.
Original language | English |
---|---|
Article number | 1800367 |
Journal | Advanced Materials Interfaces |
Volume | 5 |
Issue number | 22 |
DOIs | |
State | Published - Nov 23 2018 |
Externally published | Yes |
Funding
This work was carried out under the Materials Science Ph.D. Degree for A.M. of the Universitat Autònoma de Barcelona. H.-S.K. is grateful for the postdoctoral fellowship grant (NRF-2016R1A6A3A03012393), to the Spanish Ministry of Economy, Industry and Competitiveness (MINECO) through the Severo Ochoa Centers of Excellence Programme under Grant No. SEV-2013-0295, Grant No. ENE2016-79282-C5-2-R, and the OrgEnergy Excellence Network CTQ2016-81911-REDT. To the Agència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR) for the support to the consolidated Catalonia Research Group 2017 SGR-329 and the Xarxa de Referència en Materials Avançats per a l'Energia (Xarmae), and to the Centres de Recerca de Catalunya (CERCA) Programme/Generalitat de Catalunya and the European COST Action StableNextSol project MP1307. This work was carried out under the Materials Science Ph.D. Degree for A.M. of the Universitat Autònoma de Barcelona. H.-S.K. is grateful for the postdoctoral fellowship grant (NRF-2016R1A6A3A03012393), to the Spanish Ministry of Economy, Industry and Competitiveness (MINECO) through the Severo Ochoa Centers of Excellence Programme under Grant No. SEV-2013-0295, Grant No. ENE2016-79282-C5-2-R, and the OrgEnergy Excellence Network CTQ2016-81911-REDT. To the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) for the support to the consolidated Catalonia Research Group 2017 SGR-329 and the Xarxa de Referència en Materials Avançats per a l’Energia (Xarmae), and to the Centres de Recerca de Catalunya (CERCA) Programme/Generalitat de Catalunya and the European COST Action StableNextSol project MP1307.
Funders | Funder number |
---|---|
Xarxa de Referència en Materials Avançats | |
de Catalunya | |
European Cooperation in Science and Technology | |
Agència de Gestió d'Ajuts Universitaris i de Recerca | SGR-329 |
Ministerio de Economía y Competitividad | CTQ2016-81911-REDT, SEV-2013-0295, ENE2016-79282-C5-2-R |
Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España |
Keywords
- functionalization
- halide perovskite solar cells
- interfacial engineering
- metal oxides
- self-assembly monolayers
- stability