Interdiffusion behavior of FeCrAl with U3Si2

Rita E. Hoggan, Lingfeng He, Jason M. Harp

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Advanced steels, including FeCrAl are being considered as an alternative to the standard light water fuel (LWR) cladding, Zircalloy. FeCrAl has superior mechanical and thermal properties and oxidation resistance relative to the Zircalloy standard. Uranium Silicide (U3Si2) is a candidate to replace uranium oxide (UO2) as LWR fuel because of its higher thermal conductivity and higher fissile density relative to the current standard, UO2. The interdiffusion behavior between FeCrAl and U3Si2 is investigated in this study. Commercially available FeCrAl, along with pellets fabricated at the Idaho National Laboratory were placed in diffusion couples. Individual tests have been run at temperatures ranging from 500 ℃ to 1000 ℃ for 30 h and 100 h. The interdiffusion is analyzed with an optical microscope and scanning electron microscope (SEM). Uniform and planar diffusion regions along the material interface are illustrated with backscatter electron micrographs and energy-dispersive X-ray spectroscopy (EDS).

Original languageEnglish
Title of host publicationProceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors
EditorsMichael Wright, Denise Paraventi, John H. Jackson
PublisherSpringer International Publishing
Pages175-184
Number of pages10
ISBN (Print)9783319684536
DOIs
StatePublished - 2018
Externally publishedYes
Event18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, 2017 - Portland, United States
Duration: Aug 13 2017Aug 17 2017

Publication series

NameMinerals, Metals and Materials Series
VolumePart F11
ISSN (Print)2367-1181
ISSN (Electronic)2367-1696

Conference

Conference18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, 2017
Country/TerritoryUnited States
CityPortland
Period08/13/1708/17/17

Keywords

  • Accident tolerant fuels
  • Cladding
  • FeCrAl
  • USi

Fingerprint

Dive into the research topics of 'Interdiffusion behavior of FeCrAl with U3Si2'. Together they form a unique fingerprint.

Cite this