Interactive program debugging and optimization for directive-based, efficient GPU computing

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

Directive-based GPU programming models are gaining momentum, since they transparently relieve programmers from dealing with complexity of low-level GPU programming, which often reflects the underlying architecture. However, too much abstraction in directive models puts a significant burden on programmers for debugging applications and tuning performance. In this paper, we propose a directive-based, interactive program debugging and optimization system. This system enables intuitive and synergistic interaction among programmers, compilers, and runtimes for more productive and efficient GPU computing. We have designed and implemented a series of prototype tools within our new open source compiler framework, called Open Accelerator Research Compiler (Open ARC), Open ARC supports the full feature set of Opencast V1.0. Our evaluation on twelve Open ACC benchmarks demonstrates that our prototype debugging and optimization system can detect a variety of translation errors. Additionally, the optimization provided by our prototype minimizes memory transfers, when compared to a fully manual memory management scheme.

Original languageEnglish
Title of host publicationProceedings - IEEE 28th International Parallel and Distributed Processing Symposium, IPDPS 2014
PublisherIEEE Computer Society
Pages481-490
Number of pages10
ISBN (Print)9780769552071
DOIs
StatePublished - 2014
Event28th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2014 - Phoenix, AZ, United States
Duration: May 19 2014May 23 2014

Publication series

NameProceedings of the International Parallel and Distributed Processing Symposium, IPDPS
ISSN (Print)1530-2075
ISSN (Electronic)2332-1237

Conference

Conference28th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2014
Country/TerritoryUnited States
CityPhoenix, AZ
Period05/19/1405/23/14

Keywords

  • GPU
  • OpenACC
  • OpenARC
  • directive programming
  • interactive debugging
  • performance optimization

Fingerprint

Dive into the research topics of 'Interactive program debugging and optimization for directive-based, efficient GPU computing'. Together they form a unique fingerprint.

Cite this