Intelligent experiments through real-time AI: Fast Data Processing and Autonomous Detector Control for sPHENIX and future EIC detectors

J. Kvapil, G. Borca-Tasciuc, H. Bossi, K. Chen, Y. Chen, Y. Corrales Morales, H. Da Costa, C. Da Silva, C. Dean, J. M. Durham, S. Fu, C. Hao, P. Harris, O. Hen, H. Jheng, Y. Lee, P. Li, X. Li, Y. Lin, M. X. LiuV. Loncar, J. P. Mitrevski, A. Olvera, M. L. Purschke, J. S. Renck, G. Roland, J. Schambach, Z. Shi, N. Tran, N. Wuerfel, B. Xu, D. Yu, H. Zhang

Research output: Contribution to journalConference articlepeer-review

Abstract

This R&D project, initiated by the DOE Nuclear Physics AI-Machine Learning initiative in 2022, leverages AI to address data processing challenges in high-energy nuclear experiments (RHIC, LHC, and future EIC). Our focus is on developing a demonstrator for real-time processing of high-rate data streams from sPHENIX experiment tracking detectors. The limitations of a 15 kHz maximum trigger rate imposed by the calorimeters can be negated by intelligent use of streaming technology in the tracking system. The approach efficiently identifies low momentum rare heavy flavor events in high-rate p+p collisions (3MHz), using Graph Neural Network (GNN) and High Level Synthesis for Machine Learning (hls4ml). Success at sPHENIX promises immediate benefits, minimizing resources and accelerating the heavy-flavor measurements. The approach is transferable to other fields. For the EIC, we develop a DIS-electron tagger using Artificial Intelligence - Machine Learning (AI-ML) algorithms for real-time identification, showcasing the transformative potential of AI and FPGA technologies in high-energy nuclear and particle experiments real-time data processing pipelines.

Original languageEnglish
Article number1033
JournalProceedings of Science
Volume476
StatePublished - Apr 29 2025
Event42nd International Conference on High Energy Physics, ICHEP 2024 - Prague, Czech Republic
Duration: Jul 18 2024Jul 24 2024

Fingerprint

Dive into the research topics of 'Intelligent experiments through real-time AI: Fast Data Processing and Autonomous Detector Control for sPHENIX and future EIC detectors'. Together they form a unique fingerprint.

Cite this