Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models

Mustafa Sacit Cetiner, George F. Flanagan, Willis P. Poore III, Michael David Muhlheim

Research output: Other contributionTechnical Report

Abstract

An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two types of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.
Original languageEnglish
Place of PublicationUnited States
DOIs
StatePublished - 2014

Keywords

  • 11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS
  • small modular reactor
  • probabilistic risk assessment
  • Advanced Liquid-Metal Reactor

Fingerprint

Dive into the research topics of 'Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models'. Together they form a unique fingerprint.

Cite this