TY - JOUR
T1 - Integration and Validation of a Thermal Energy Storage System for Electric Vehicle Cabin Heating
AU - Wang, Mingyu
AU - Craig, Timothy
AU - Wolfe, Edward
AU - Laclair, Tim J.
AU - Gao, Zhiming
AU - Levin, Michael
AU - Demitroff, Danrich
AU - Shaikh, Furqan
N1 - Publisher Copyright:
Copyright © 2017 SAE International.
PY - 2017/3/28
Y1 - 2017/3/28
N2 - It is widely recognized in the automotive industry that, in very cold climatic conditions, the driving range of an Electric Vehicle (EV) can be reduced by 50% or more. In an effort to minimize the EV range penalty, a novel thermal energy storage system has been designed to provide cabin heating in EVs and Plug-in Hybrid Electric Vehicles (PHEVs) by using an advanced phase change material (PCM). This system is known as the Electrical PCM-based Thermal Heating System (ePATHS) [1, 2]. When the EV is connected to the electric grid to charge its traction battery, the ePATHS system is also "charged" with thermal energy. The stored heat is subsequently deployed for cabin comfort heating during driving, for example during commuting to and from work. The ePATHS system, especially the PCM heat exchanger component, has gone through substantial redesign in order to meet functionality and commercialization requirements. The final system development for EV implementation has occurred on a mid-range EV and has been evaluated for its capability to extend the driving range. Both simulated driving in a climatic tunnel and actual road testing have been carried out. The ePATHS has demonstrated its ability to supply the entire cabin heating needs for a round trip commute totaling 46 minutes, including 8 hours of parking, at an ambient temperature of -10°C.
AB - It is widely recognized in the automotive industry that, in very cold climatic conditions, the driving range of an Electric Vehicle (EV) can be reduced by 50% or more. In an effort to minimize the EV range penalty, a novel thermal energy storage system has been designed to provide cabin heating in EVs and Plug-in Hybrid Electric Vehicles (PHEVs) by using an advanced phase change material (PCM). This system is known as the Electrical PCM-based Thermal Heating System (ePATHS) [1, 2]. When the EV is connected to the electric grid to charge its traction battery, the ePATHS system is also "charged" with thermal energy. The stored heat is subsequently deployed for cabin comfort heating during driving, for example during commuting to and from work. The ePATHS system, especially the PCM heat exchanger component, has gone through substantial redesign in order to meet functionality and commercialization requirements. The final system development for EV implementation has occurred on a mid-range EV and has been evaluated for its capability to extend the driving range. Both simulated driving in a climatic tunnel and actual road testing have been carried out. The ePATHS has demonstrated its ability to supply the entire cabin heating needs for a round trip commute totaling 46 minutes, including 8 hours of parking, at an ambient temperature of -10°C.
UR - http://www.scopus.com/inward/record.url?scp=85018453293&partnerID=8YFLogxK
U2 - 10.4271/2017-01-0183
DO - 10.4271/2017-01-0183
M3 - Conference article
AN - SCOPUS:85018453293
SN - 0148-7191
VL - 2017-March
JO - SAE Technical Papers
JF - SAE Technical Papers
IS - March
T2 - SAE World Congress Experience, WCX 2017
Y2 - 4 April 2017 through 6 April 2017
ER -