TY - JOUR
T1 - Integrated socio-environmental vulnerability assessment of coastal hazards using data-driven and multi-criteria analysis approaches
AU - Tanim, Ahad Hasan
AU - Goharian, Erfan
AU - Moradkhani, Hamid
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Coastal hazard vulnerability assessment has been centered around the multi-variate analysis of geo-physical and hydroclimate data. The representation of coupled socio-environmental factors has often been ignored in vulnerability assessment. This study develops an integrated socio-environmental Coastal Vulnerability Index (CVI), which simultaneously combines information from five vulnerability groups: biophysical, hydroclimate, socio-economic, ecological, and shoreline. Using the Multi-Criteria Decision Making (MCDM) approach, two CVI (CVI-50 and CVI-90) have been developed based on average and extreme conditions of the factors. Each CVI is then compared to a data-driven CVI, which is formed based on Probabilistic Principal Component Analysis (PPCA). Both MCDM and PPCA have been tied into geospatial analysis to assess the natural hazard vulnerability of six coastal counties in South Carolina. Despite traditional MCDM-based vulnerability assessments, where the final index is estimated based on subjective weighting methods or equal weights, this study employs an entropy weighting technique to reduce the individuals’ biases in weight assignment. Considering the multivariate nature of the coastal vulnerability, the validation results show both CVI-90 and PPCA preserve the vulnerability results from biophysical and socio-economic factors reasonably, while the CVI-50 methods underestimate the biophysical vulnerability of coastal hazards. Sensitivity analysis of CVIs shows that Charleston County is more sensitive to socio-economic factors, whereas in Horry County the physical factors contribute to a higher degree of vulnerability. Findings from this study suggest that the PPCA technique facilitates the high-dimensional vulnerability assessment, while the MCDM approach accounts more for decision-makers' opinions.
AB - Coastal hazard vulnerability assessment has been centered around the multi-variate analysis of geo-physical and hydroclimate data. The representation of coupled socio-environmental factors has often been ignored in vulnerability assessment. This study develops an integrated socio-environmental Coastal Vulnerability Index (CVI), which simultaneously combines information from five vulnerability groups: biophysical, hydroclimate, socio-economic, ecological, and shoreline. Using the Multi-Criteria Decision Making (MCDM) approach, two CVI (CVI-50 and CVI-90) have been developed based on average and extreme conditions of the factors. Each CVI is then compared to a data-driven CVI, which is formed based on Probabilistic Principal Component Analysis (PPCA). Both MCDM and PPCA have been tied into geospatial analysis to assess the natural hazard vulnerability of six coastal counties in South Carolina. Despite traditional MCDM-based vulnerability assessments, where the final index is estimated based on subjective weighting methods or equal weights, this study employs an entropy weighting technique to reduce the individuals’ biases in weight assignment. Considering the multivariate nature of the coastal vulnerability, the validation results show both CVI-90 and PPCA preserve the vulnerability results from biophysical and socio-economic factors reasonably, while the CVI-50 methods underestimate the biophysical vulnerability of coastal hazards. Sensitivity analysis of CVIs shows that Charleston County is more sensitive to socio-economic factors, whereas in Horry County the physical factors contribute to a higher degree of vulnerability. Findings from this study suggest that the PPCA technique facilitates the high-dimensional vulnerability assessment, while the MCDM approach accounts more for decision-makers' opinions.
UR - http://www.scopus.com/inward/record.url?scp=85133692551&partnerID=8YFLogxK
U2 - 10.1038/s41598-022-15237-z
DO - 10.1038/s41598-022-15237-z
M3 - Article
C2 - 35803988
AN - SCOPUS:85133692551
SN - 2045-2322
VL - 12
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 11625
ER -