Innovations in Technology and Science R&D for ITER

the ITER Organization, Domestic Agencies and ITER Collaborators

Research output: Contribution to journalArticlepeer-review

35 Scopus citations

Abstract

ITER is a critical step in the development of fusion energy: its role is to confirm the feasibility of exploiting magnetic confinement fusion for the production of energy for peaceful purposes by providing an integrated demonstration of the physics and technology required for a fusion power plant. Rapid progress is being made in project construction, and the facility is now taking shape at St-Paul-lez-Durance in southern France. In the course of designing and manufacturing of the systems making up the ITER tokamak and the ITER facility, extensive ground-breaking R&D has been implemented by the ITER partners across a wide range of technology and science areas which underpin the achievement of the project’s engineering and fusion plasma performance requirements. Significant developments have been made in the production of high performance Nb3Sn superconducting strand and in magnet technologies supporting the construction of the largest superconducting magnets produced to date. High heat flux plasma facing components have been fabricated which are capable of sustaining quasi-stationary heat loads of up to 10 MW m−2 and transient loads of up to 20 MW m−2. Fusion nuclear technologies such as remote maintenance and tritium breeding have received specific emphasis within the ITER R&D program, since extensive deployment of these technologies is foreseen. Diagnostic systems face particular challenges in the ITER environment, and wide-ranging R&D activities have been implemented to develop novel solutions to ensure an adequate measurement capability in ITER DT operation. Routine and reliable operation in ITER will require a highly effective capability for the detection, avoidance and mitigation of disruptions, and significant science and technology R&D is underway to establish this capability. The overall integration of the control requirements for the ITER plasma and facility, in particular during burning plasma operation, has presented new challenges for fusion control systems, including the need for robust safety and hardware (investment) protection. These challenges are being addressed via the implementation of the most extensive and ambitious control system to date. The paper introduces the ITER project and its major goals in relation to the development of fusion energy and provides an overview of key innovations which have been made in these areas of fusion technology and science in support of ITER construction.

Original languageEnglish
Pages (from-to)11-71
Number of pages61
JournalJournal of Fusion Energy
Volume38
Issue number1
DOIs
StatePublished - Feb 15 2019

Keywords

  • Burning plasma
  • Fusion power
  • Fusion technology
  • ITER
  • Tokamak

Fingerprint

Dive into the research topics of 'Innovations in Technology and Science R&D for ITER'. Together they form a unique fingerprint.

Cite this