Injection optics for the JLEIC Ion Collider ring

V. S. Morozov, Ya S. Derbenev, F. Lin, F. C. Pilat, G. H. Wei, Y. Zhang, Y. M. Nosochkov, Y. Cai, M. K. Sullivan, M. H. Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

The Jefferson Lab Electron-Ion Collider (JLEIC) will accelerate protons and ions from 8 GeV to 100 GeV. A very low beta function at the Interaction Point (IP) is needed to achieve the required luminosity. One consequence of the low beta optics is that the beta function in the final focusing (FF) quadrupoles is extremely high. This leads to a large beam size in these magnets as well as strong sensitivity to errors which limits the dynamic aperture. These effects are stronger at injection energy where the beam size is maximum, and therefore very large aperture FF magnets are required to allow a large dynamic aperture. A standard solution is a relaxed injection optics with IP beta function large enough to provide a reasonable FF aperture. This also reduces the effects of FF errors resulting in a larger dynamic aperture at injection. We describe the ion ring injection optics design as well as a beta-squeeze transition from the injection to collision optics.

Original languageEnglish
Title of host publicationIPAC 2016 - Proceedings of the 7th International Particle Accelerator Conference
PublisherJoint Accelerator Conferences Website (JACoW)
Pages2445-2447
Number of pages3
ISBN (Electronic)9783954501472
StatePublished - 2016
Externally publishedYes
Event7th International Particle Accelerator Conference, IPAC 2016 - Busan, Korea, Republic of
Duration: May 8 2016May 13 2016

Publication series

NameIPAC 2016 - Proceedings of the 7th International Particle Accelerator Conference

Conference

Conference7th International Particle Accelerator Conference, IPAC 2016
Country/TerritoryKorea, Republic of
CityBusan
Period05/8/1605/13/16

Fingerprint

Dive into the research topics of 'Injection optics for the JLEIC Ion Collider ring'. Together they form a unique fingerprint.

Cite this