TY - JOUR
T1 - Influence of water thermal history and overpressure on CO2-hydrate nucleation and morphology
AU - Zatsepina, O. Y.
AU - Riestenberg, D.
AU - McCallum, S. D.
AU - Gborigi, M.
AU - Brandt, C.
AU - Buffett, B. A.
AU - Phelps, T. J.
PY - 2004
Y1 - 2004
N2 - The onset of gas hydrate nucleation is greatly affected by the thermal history of the water that forms its lattice structure. Hydrate formation experiments were performed in a 72 L pressure vessel by injecting bubbles of carbon dioxide through a 1 L tube at hydrate formation pressures (1.4 to 3.7 MPa) and temperatures (2 to 5 °C). The results revealed that when even a small fraction (e.g., 5-35%) of the water in which the hydrate formed was recently thawed the overpressure for nucleation was reduced by an average of 50% as compared to untreated distilled water. This observation was confirmed by an analysis of variance (ANOVA) test that indicated that recently thawed water required a significantly lower overpressure compared to the untreated distilled water. In experiments where hydrate nucleated at low overpressure (e.g., 0.75 MPa), hydrate formed at the vapor-liquid interface, encrusting the bubbles with less than 1 g of hydrate accumulation in the first minute. When a higher overpressure was required for nucleation (e.g., 1.3 MPa), hydrate was observed to form abruptly not only on bubbles but also from the bulk liquid phase, typically accumulating a mass of more than 100g in the first few seconds. Our results show that initiation of hydrate formation is strongly influenced by temperature-dependent pre-structuring of water molecules prior to their contact with gas. Although as little as a 5% volume fraction of pre-structured water may decrease the required overpressure, once hydrate formation commences the mass of hydrate accumulation is dependent on the overpressure.
AB - The onset of gas hydrate nucleation is greatly affected by the thermal history of the water that forms its lattice structure. Hydrate formation experiments were performed in a 72 L pressure vessel by injecting bubbles of carbon dioxide through a 1 L tube at hydrate formation pressures (1.4 to 3.7 MPa) and temperatures (2 to 5 °C). The results revealed that when even a small fraction (e.g., 5-35%) of the water in which the hydrate formed was recently thawed the overpressure for nucleation was reduced by an average of 50% as compared to untreated distilled water. This observation was confirmed by an analysis of variance (ANOVA) test that indicated that recently thawed water required a significantly lower overpressure compared to the untreated distilled water. In experiments where hydrate nucleated at low overpressure (e.g., 0.75 MPa), hydrate formed at the vapor-liquid interface, encrusting the bubbles with less than 1 g of hydrate accumulation in the first minute. When a higher overpressure was required for nucleation (e.g., 1.3 MPa), hydrate was observed to form abruptly not only on bubbles but also from the bulk liquid phase, typically accumulating a mass of more than 100g in the first few seconds. Our results show that initiation of hydrate formation is strongly influenced by temperature-dependent pre-structuring of water molecules prior to their contact with gas. Although as little as a 5% volume fraction of pre-structured water may decrease the required overpressure, once hydrate formation commences the mass of hydrate accumulation is dependent on the overpressure.
UR - http://www.scopus.com/inward/record.url?scp=4444374013&partnerID=8YFLogxK
U2 - 10.2138/am-2004-8-913
DO - 10.2138/am-2004-8-913
M3 - Article
AN - SCOPUS:4444374013
SN - 0003-004X
VL - 89
SP - 1254
EP - 1259
JO - American Mineralogist
JF - American Mineralogist
IS - 8-9
ER -