TY - JOUR
T1 - Influence of the spatial Pu variation for evaluating the Pu content in spent nuclear fuel using Support Vector Regression
AU - Woo, Seung Min
AU - Kim, Hyeonmin
AU - Chirayath, Sunil S.
N1 - Publisher Copyright:
© 2019
PY - 2020/1
Y1 - 2020/1
N2 - The correlation of the amount of Pu produced in spent nuclear fuel to burnup (BU), cooling time (CT), initial U-235 enrichment (IE), and axial location (AX) is investigated by the Support Vector Regression (SVR) method. The AX parameter is a new one compared to the other studies reported in the literature. The regression coefficient (R2) and root mean square error (RMSE) values are used to determine the accuracies between the use of a four-parameter (BU, CT, IE, AX) and a three-parameter (BU, CT, IE) SVR model in the predicting the local Pu amount in the spent nuclear fuel. The R2 value for the four-parameter case (0.9996) is closer to unity (best case) than that for the three-parameter case (0.9776). The RMSE for the four-parameter case (0.0034) is less than of the three-parameter case (0.0243). The results of the SVR based machine learning analyses to predict the axial variation of Pu mass density in nuclear fuel show that accurate results are obtained from using the four-parameter case when compared to the original predictions using the SERPENT code. The correlation coefficients for BU, CT, IE, and AX for the Pu mass density variation are also evaluated. From the correlation analysis, it is observed that the most strongly correlated parameter with the Pu mass density is BU. The observations from this study show that the errors in Pu mass density axial variation predictions can be mitigated by considering the AX parameter along with the BU, CT and IE parameters.
AB - The correlation of the amount of Pu produced in spent nuclear fuel to burnup (BU), cooling time (CT), initial U-235 enrichment (IE), and axial location (AX) is investigated by the Support Vector Regression (SVR) method. The AX parameter is a new one compared to the other studies reported in the literature. The regression coefficient (R2) and root mean square error (RMSE) values are used to determine the accuracies between the use of a four-parameter (BU, CT, IE, AX) and a three-parameter (BU, CT, IE) SVR model in the predicting the local Pu amount in the spent nuclear fuel. The R2 value for the four-parameter case (0.9996) is closer to unity (best case) than that for the three-parameter case (0.9776). The RMSE for the four-parameter case (0.0034) is less than of the three-parameter case (0.0243). The results of the SVR based machine learning analyses to predict the axial variation of Pu mass density in nuclear fuel show that accurate results are obtained from using the four-parameter case when compared to the original predictions using the SERPENT code. The correlation coefficients for BU, CT, IE, and AX for the Pu mass density variation are also evaluated. From the correlation analysis, it is observed that the most strongly correlated parameter with the Pu mass density is BU. The observations from this study show that the errors in Pu mass density axial variation predictions can be mitigated by considering the AX parameter along with the BU, CT and IE parameters.
KW - Non-destructive assay
KW - Nuclear material safeguards
KW - Plutonium
KW - SERPENT
KW - Support Vector Regression
UR - http://www.scopus.com/inward/record.url?scp=85071101704&partnerID=8YFLogxK
U2 - 10.1016/j.anucene.2019.106997
DO - 10.1016/j.anucene.2019.106997
M3 - Article
AN - SCOPUS:85071101704
SN - 0306-4549
VL - 135
JO - Annals of Nuclear Energy
JF - Annals of Nuclear Energy
M1 - 106997
ER -