Influence of alloying on α-αʹ phase separation in duplex stainless steels

David A. Garfinkel, Jonathan D. Poplawsky, Wei Guo, George A. Young, Julie D. Tucker

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Thermal embrittlement caused by phase transformations in the temperature range of 204–538 °C limits the service temperature of duplex stainless steels. The present study investigates a set of wrought (2003, 2101, and 2205) and weld (2209-w and 2101-w) alloys in order to better understand how alloying elements affect thermal embrittlement. Samples were aged at 427 °C for up to 10,000 h. The embrittlement and thermal instability were assessed via nanoindentation, impact toughness testing, and atom probe tomography (APT). Results demonstrate that the spinodal amplitude is not an accurate predictor of mechanical degradation, and that nanoindentation within the ferrite grains served as a reasonable approximate for the embrittlement behavior. Compositionally, alloys with a lower concentration of Cr, Mo, and Ni were found to exhibit superior mechanical properties following aging.

Original languageEnglish
Title of host publicationMinerals, Metals and Materials Series
PublisherSpringer International Publishing
Pages2399-2408
Number of pages10
ISBN (Print)9783030046385, 9783030046392, 9783319515403, 9783319651354, 9783319728520, 9783319950211
DOIs
StatePublished - 2019
Event18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors 2019 - Boston, United States
Duration: Aug 18 2019Aug 22 2019

Publication series

NameMinerals, Metals and Materials Series
ISSN (Print)2367-1181
ISSN (Electronic)2367-1696

Conference

Conference18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors 2019
Country/TerritoryUnited States
CityBoston
Period08/18/1908/22/19

Bibliographical note

Publisher Copyright:
© 2019, The Minerals, Metals & Materials Society.

Funding

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan ( http://energy.gov/downloads/doe-public-access-plan ).

FundersFunder number
U.S. Department of Energy

    Keywords

    • Duplex stainless steels
    • Embrittlement
    • Spinodal decomposition

    Fingerprint

    Dive into the research topics of 'Influence of alloying on α-αʹ phase separation in duplex stainless steels'. Together they form a unique fingerprint.

    Cite this