Inferring the spread of COVID-19: the role of time-varying reporting rate in epidemiological modelling

Adam Spannaus, Theodore Papamarkou, Samantha Erwin, J. Blair Christian

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

The role of epidemiological models is crucial for informing public health officials during a public health emergency, such as the COVID-19 pandemic. However, traditional epidemiological models fail to capture the time-varying effects of mitigation strategies and do not account for under-reporting of active cases, thus introducing bias in the estimation of model parameters. To infer more accurate parameter estimates and to reduce the uncertainty of these estimates, we extend the SIR and SEIR epidemiological models with two time-varying parameters that capture the transmission rate and the rate at which active cases are reported to health officials. Using two real data sets of COVID-19 cases, we perform Bayesian inference via our SIR and SEIR models with time-varying transmission and reporting rates and via their standard counterparts with constant rates; our approach provides parameter estimates with more realistic interpretation, and 1-week ahead predictions with reduced uncertainty. Furthermore, we find consistent under-reporting in the number of active cases in the data that we consider, suggesting that the initial phase of the pandemic was more widespread than previously reported.

Original languageEnglish
Article number10761
JournalScientific Reports
Volume12
Issue number1
DOIs
StatePublished - Dec 2022

Funding

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable,world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). Research was supported by the National Virtual Biotechnology Laboratory, a consortium of DOE national laboratories focused on response to COVID-19, with funding provided by the Coronavirus CARES Act. All numerical experiments were completed employing the computing resources of the Compute and Data Environment for Science (CADES) at the Oak Ridge National Laboratory. The latter of which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable,world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan ( http://energy.gov/downloads/doe-public-access-plan ). Research was supported by the National Virtual Biotechnology Laboratory, a consortium of DOE national laboratories focused on response to COVID-19, with funding provided by the Coronavirus CARES Act. All numerical experiments were completed employing the computing resources of the Compute and Data Environment for Science (CADES) at the Oak Ridge National Laboratory. The latter of which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

FundersFunder number
CADES
DOE Public Access Plan
Data Environment for Science
National Virtual Biotechnology Laboratory
United States Government
U.S. Department of Energy
Office of Science
Oak Ridge National Laboratory

    Fingerprint

    Dive into the research topics of 'Inferring the spread of COVID-19: the role of time-varying reporting rate in epidemiological modelling'. Together they form a unique fingerprint.

    Cite this