@article{6de1bbefc861492f801e057fc31475ea,
title = "In situ small angle neutron scattering revealing ion sorption in microporous carbon electrical double layer capacitors",
abstract = "Experimental studies showed the impact of the electrolyte solvents on both the ion transport and the specific capacitance of microporous carbons. However, the related structure-property relationships remain largely unclear and the reported results are inconsistent. The details of the interactions of the charged carbon pore walls with electrolyte ions and solvent molecules at a subnanometer scale are still largely unknown. Here for the first time we utilize in situ small angle neutron scattering (SANS) to reveal the electroadsorption of organic electrolyte ions in carbon pores of different sizes. A 1 M solution of tetraethylammonium tetrafluoroborate (TEATFB) salt in deuterated acetonitrile (d-AN) was used in an activated carbon with the pore size distribution similar to that of the carbons used in commercial double layer capacitors. In spite of the incomplete wetting of the smallest carbon pores by the d-AN, we observed enhanced ion sorption in subnanometer pores under the applied potential. Such results suggest the visible impact of electrowetting phenomena counterbalancing the high energy of the carbon/electrolyte interface in small pores. This behavior may explain the characteristic butterfly wing shape of the cyclic voltammetry curve that demonstrates higher specific capacitance at higher applied potentials, when the smallest pores become more accessible to electrolyte. Our study outlines a general methodology for studying various organic salts-solvent-carbon combinations.",
keywords = "energy storage, ion adsorption, porous carbon, small-angle neutron scattering",
author = "Sofiane Boukhalfa and Daniel Gordon and Lilin He and Melnichenko, {Yuri B.} and Naoki Nitta and Alexandre Magasinski and Gleb Yushin",
year = "2014",
month = mar,
day = "25",
doi = "10.1021/nn406077n",
language = "English",
volume = "8",
pages = "2495--2503",
journal = "ACS Nano",
issn = "1936-0851",
publisher = "American Chemical Society",
number = "3",
}