Abstract
Published literature shows defect formation during laser powder bed fusion additive manufacturing (AM) of nickel base superalloys are sensitive to alloy chemistry, processing conditions, and geometry. In this work, ability to detect spatial distributions of defects is explored using in-situ monitoring of thermal signatures and surfaces. Simple and complex geometrical components were fabricated with CM247-LC® powder in an AM machine outfitted with optical and thermal sensors. The spatial and temporal variations of thermal signatures (peak intensity, decay, and number of gyrations), as well as, layer-by-layer optical images were analyzed. The observed thermal signatures were also verified with an analytical model for layer-wise heat transfer simulation that is sensitive to laser raster scan strategies. The cross-comparison data with reference to defects, obtained by X-ray tomography, were correlated with in-situ observations.
Original language | English |
---|---|
Pages (from-to) | 6528-6545 |
Number of pages | 18 |
Journal | Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science |
Volume | 51 |
Issue number | 12 |
DOIs | |
State | Published - Dec 2020 |
Funding
Authors thank Ms. Sujana Chandrasekhar for critical review of the document. This research was sponsored by Honeywell Aerospace and the physical experimentation was completed by support through the Manufacturing Demonstration Facility at Oak Ridge National Research Laboratory. SB also acknowledges partial support from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UT- Battelle, LLC. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05- 00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (https://www.energy.gov/downloads/doe-public-access-plan ). SB acknowledges the partial support from the US Department of the Navy, Office of Naval Research under ONR award number N00014-18-1-2794. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Office of Naval Research. Part of the research supported from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (https://www.energy.gov/downloads/doe-public-access-plan ) Authors thank Ms. Sujana Chandrasekhar for critical review of the document. This research was sponsored by Honeywell Aerospace and the physical experimentation was completed by support through the Manufacturing Demonstration Facility at Oak Ridge National Research Laboratory. SB also acknowledges partial support from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UT- Battelle, LLC. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05- 00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan ( https://www.energy.gov/downloads/doe-public-access-plan ). SB acknowledges the partial support from the US Department of the Navy, Office of Naval Research under ONR award number N00014-18-1-2794. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Office of Naval Research. Part of the research supported from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan ( https://www.energy.gov/downloads/doe-public-access-plan )
Funders | Funder number |
---|---|
DOE Public Access Plan | |
Honeywell Aerospace | |
Oak Ridge National Laboratory | |
US Department of the Navy | |
United States Government | |
Office of Naval Research | N00014-18-1-2794 |
U.S. Department of Energy | |
Advanced Manufacturing Office | DE-AC05-00OR22725 |
Office of Energy Efficiency and Renewable Energy | |
Oak Ridge National Laboratory | |
U.S. Navy |