In situ imaging and spectroscopy of single-wall carbon nanotube synthesis by laser vaporization

A. A. Puretzky, D. B. Geohegan, X. Fan, S. J. Pennycook

Research output: Contribution to journalArticlepeer-review

133 Scopus citations

Abstract

The synthesis of single-wall carbon nanotubes by Nd:YAG laser vaporization of a graphite/(Ni, Co) target is investigated by laser-induced luminescence imaging and spectroscopy of Co atoms, C2 and C3 molecules, and clusters at 1000 °C in flowing 500 Torr Ar. These laser-induced emission images under typical synthesis conditions show that the plume of vaporized material is segregated and confined within a vortex ring which maintains a ∼1 cm3 volume for several seconds. Using time-resolved spectroscopy and spectroscopic imaging, the time for conversion of atomic and molecular species to clusters was measured for both carbon (200 μs) and cobalt (2 ms). This rapid conversion of carbon to nanoparticles, combined with transmission electron microscopy analysis of the collected deposits, indicate that nanotube growth occurs over several seconds in a plume of mixed nanoparticles. By adjusting the time spent by the plume within the high-temperature zone using these in situ diagnostics, single-walled nanotubes of controlled length were grown at an estimated rate of 0.2 μm/s.

Original languageEnglish
Pages (from-to)182-184
Number of pages3
JournalApplied Physics Letters
Volume76
Issue number2
DOIs
StatePublished - Jan 10 2000

Fingerprint

Dive into the research topics of 'In situ imaging and spectroscopy of single-wall carbon nanotube synthesis by laser vaporization'. Together they form a unique fingerprint.

Cite this