In-cylinder reaction chemistry and kinetics during negative valve overlap fuel injection under low-oxygen conditions

Vickey B. Kalaskar, James P. Szybist, Derek A. Splitter, Josh A. Pihl, Zhiming Gao, C. Stuart Daw

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

Fuel injection into the negative valve overlap (NVO) period is a common method for controlling combustion phasing in homogeneous charge compression ignition (HCCI) as well as other forms of advanced combustion. During this event, at least a portion of the fuel hydrocarbons can be converted to products containing significant levels of H2 and CO, as well as other short chain hydrocarbons by means of thermal cracking, watergas shift, and partial oxidation reactions, depending on the availability of oxygen and the time-temperature- pressure history. The resulting products alter the autoignition properties of the combined fuel mixture for HCCI. Fuel-rich chemistry in a partial oxidation environment is also relevant to other high efficiency engine concepts (e.g., the dedicated EGR (D-EGR) concept from SWRI). In this study, we used a unique 6-stroke engine cycle to experimentally investigate the chemistry of a range of fuels injected during NVO under low oxygen conditions. Fuels investigated included iso-octane, iso-butanol, ethanol, and methanol. Products from NVO chemistry were highly dependent on fuel type and injection timing, with isooctane producing less than 1.5% hydrogen and methanol producing more than 8%. We compare the experimental trends with CHEMKIN (single zone, 0-D model) predictions using multiple kinetic mechanisms available in the current literature. Our primary conclusion is that the kinetic mechanisms investigated are unable to accurately predict the magnitude and trends of major species we observed.

Original languageEnglish
Title of host publicationFuels; Numerical Simulation; Engine Design, Lubrication, and Applications
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)9780791856109
DOIs
StatePublished - 2013
EventASME 2013 Internal Combustion Engine Division Fall Technical Conference, ICEF 2013 - Dearborn, MI, United States
Duration: Oct 13 2013Oct 16 2013

Publication series

NameASME 2013 Internal Combustion Engine Division Fall Technical Conference, ICEF 2013
Volume2

Conference

ConferenceASME 2013 Internal Combustion Engine Division Fall Technical Conference, ICEF 2013
Country/TerritoryUnited States
CityDearborn, MI
Period10/13/1310/16/13

Fingerprint

Dive into the research topics of 'In-cylinder reaction chemistry and kinetics during negative valve overlap fuel injection under low-oxygen conditions'. Together they form a unique fingerprint.

Cite this