TY - JOUR
T1 - In-cylinder production of hydrogen during net-lean diesel operation
AU - West, Brian
AU - Huff, Shean
AU - Parks, James
AU - Swartz, Matt
AU - Graves, Ron
PY - 2006
Y1 - 2006
N2 - Hydrogen (H2) is an excellent reductant, and has been shown to be highly effective when introduced into a variety of catalysts such as three-way catalysts, lean NOx traps (LNTs), and hydrocarbon lean NOx catalysts (also termed hydrocarbon selective catalytic reduction (SCR) catalysts). Furthermore, since lean-burn engines offer improved fuel efficiency yet difficult NOx emission control, H2 production during lean operation for the purpose of NOx reduction could be beneficial. On-board generation of hydrogen is being explored via catalytic or plasma-based reformers. A possible alternative to these add-on systems is generation of the H2 in-cylinder with standard fuel injection hardware. This paper details experiments relating to the production and measurement of H2 under net-lean operation in a common-rail diesel engine. In-cylinder fuel control is used to tailor the combustion process such that H2 is generated while maintaining a lean Air:Fuel ratio in the bulk exhaust gas.
AB - Hydrogen (H2) is an excellent reductant, and has been shown to be highly effective when introduced into a variety of catalysts such as three-way catalysts, lean NOx traps (LNTs), and hydrocarbon lean NOx catalysts (also termed hydrocarbon selective catalytic reduction (SCR) catalysts). Furthermore, since lean-burn engines offer improved fuel efficiency yet difficult NOx emission control, H2 production during lean operation for the purpose of NOx reduction could be beneficial. On-board generation of hydrogen is being explored via catalytic or plasma-based reformers. A possible alternative to these add-on systems is generation of the H2 in-cylinder with standard fuel injection hardware. This paper details experiments relating to the production and measurement of H2 under net-lean operation in a common-rail diesel engine. In-cylinder fuel control is used to tailor the combustion process such that H2 is generated while maintaining a lean Air:Fuel ratio in the bulk exhaust gas.
UR - http://www.scopus.com/inward/record.url?scp=85072442825&partnerID=8YFLogxK
U2 - 10.4271/2006-01-0212
DO - 10.4271/2006-01-0212
M3 - Conference article
AN - SCOPUS:85072442825
SN - 0148-7191
JO - SAE Technical Papers
JF - SAE Technical Papers
T2 - 2006 SAE World Congress
Y2 - 3 April 2006 through 6 April 2006
ER -