In 133: A Rosetta Stone for Decays of r -Process Nuclei

Z. Y. Xu, M. Madurga, R. Grzywacz, T. T. King, A. Algora, A. N. Andreyev, J. Benito, T. Berry, M. J.G. Borge, C. Costache, H. De Witte, A. Fijalkowska, L. M. Fraile, H. O.U. Fynbo, A. Gottardo, C. Halverson, L. J. Harkness-Brennan, J. Heideman, M. Huyse, A. IllanaJaniak, D. S. Judson, A. Korgul, T. Kurtukian-Nieto, I. Lazarus, R. Licǎ, R. Lozeva, N. Marginean, R. Marginean, C. Mazzocchi, C. Mihai, R. E. Mihai, A. I. Morales, R. D. Page, J. Pakarinen, M. Piersa-Siłkowska, Zs Podolyák, P. Sarriguren, M. Singh, Ch Sotty, M. Stepaniuk, O. Tengblad, A. Turturica, P. Van Duppen, V. Vedia, S. Viñals, N. Warr, R. Yokoyama, C. X. Yuan

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

The β decays from both the ground state and a long-lived isomer of In133 were studied at the ISOLDE Decay Station (IDS). With a hybrid detection system sensitive to β, γ, and neutron spectroscopy, the comparative partial half-lives (logft) have been measured for all their dominant β-decay channels for the first time, including a low-energy Gamow-Teller transition and several first-forbidden (FF) transitions. Uniquely for such a heavy neutron-rich nucleus, their β decays selectively populate only a few isolated neutron unbound states in Sn133. Precise energy and branching-ratio measurements of those resonances allow us to benchmark β-decay theories at an unprecedented level in this region of the nuclear chart. The results show good agreement with the newly developed large-scale shell model (LSSM) calculations. The experimental findings establish an archetype for the β decay of neutron-rich nuclei southeast of Sn132 and will serve as a guide for future theoretical development aiming to describe accurately the key β decays in the rapid-neutron capture (r-) process.

Original languageEnglish
Article number022501
JournalPhysical Review Letters
Volume131
Issue number2
DOIs
StatePublished - Jul 14 2023

Funding

We acknowledge the support of the ISOLDE Collaboration and technical teams. The authors thank Dr. Soda Yoshida, Dr. Yutaka Utsuno, Dr. Noritaka Shimizu, Dr. Kate L Jones, and Dr. Ivan N Borzov for valuable discussions. This project was supported by the European Unions Horizon 2020 research and innovation programme under the Grant Agreement No. 654002 (ENSAR2) and the Marie Skłodowska-Curie Grant Agreement No. 101032999 (BeLaPEx); the Office of Nuclear Physics, U.S. Department of Energy under Awards No. DE-FG02-96ER40983 (UTK) and No. DE-AC05-00OR22725 (ORNL); the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Award No. DE-NA0002132; the Romanian IFA project CERN-RO/ISOLDE; the Research Foundation Flanders (FWO, Belgium); the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office (BriX network P7/12); the German BMBF under Contracts No. 05P18PKCIA and No. 05P21PKCI1 in Verbundprojekte 05P2018 and 05P2021; the UK Science and Technology Facilities Research Council (STFC) of the UK Grants No. ST/R004056/1, No. ST/P004598/1, No. ST/P003885/1, No. ST/V001027/1, and No. ST/V001035/1; National Natural Science Foundation of China under Grant No. 11775316; the Polish National Science Center under Grant No. 2020/39/B/ST2/02346; the Polish Ministry of Education and Science under Contract No. 2021/WK/07; Spanish MCIN/AEI under Grants No. PGC2018-093636-B-I00, No. RTI2018-098868-B-I00, No. PID2019-104390GB-I00, No. PID2019-104714GB-C21, and No. PID2021-126998OB-I00; Generalitat Valenciana, Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital under Grant No. CISEJI/2022/25; Universidad Complutense de Madrid (Spain) through Grupo de Física Nuclear under Grant No. 910059 and through the Predoctoral Grant No. CT27/16-CT28/16; the EU via NextGenerationEU funds. The LSSM calculations were carried out by kshell .

FundersFunder number
Grupo de Física Nuclear910059
UK Science and Technology Facilities Research Council
U.S. Department of EnergyDE-AC05-00OR22725, DE-FG02-96ER40983, DE-NA0002132
Albert Ellis InstituteRTI2018-098868-B-I00, PGC2018-093636-B-I00, PID2021-126998OB-I00, PID2019-104714GB-C21, PID2019-104390GB-I00
National Nuclear Security Administration
Nuclear Physics
Oak Ridge National Laboratory
Emory University
H2020 Marie Skłodowska-Curie Actions101032999
Science and Technology Facilities CouncilST/P004598/1, ST/V001035/1, ST/R004056/1, ST/V001027/1, ST/P003885/1
National Natural Science Foundation of China11775316
Bundesministerium für Bildung und Forschung05P2021, 05P18PKCIA, 05P2018, 05P21PKCI1
Belgian Federal Science Policy Office
Universidad Complutense de Madrid
Fonds Wetenschappelijk Onderzoek
Generalitat Valenciana
Narodowe Centrum Nauki2020/39/B/ST2/02346
Ministerstwo Edukacji i Nauki2021/WK/07
Ministerio de Ciencia e Innovación
Horizon 2020654002, ENSAR2
Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat ValencianaCISEJI/2022/25
Institutul de Fizică Atomică

    Fingerprint

    Dive into the research topics of 'In 133: A Rosetta Stone for Decays of r -Process Nuclei'. Together they form a unique fingerprint.

    Cite this