Impurity transport in PISCES-RF

G. Dhamale, M. J. Baldwin, M. S. Islam, A. Kumar, H. M. Meyer, D. Nishijima, L. Nuckols, M. I. Patino, W. Tierens, G. R. Tynan, J. Rapp

Research output: Contribution to journalArticlepeer-review

Abstract

Linear plasma devices (LPD) utilizing a helicon plasma source, a high density light ion source, can generate impurities due to progressive erosion of the radio frequency (RF) transmission window caused by rectified sheath voltage. These source-born impurities can entrain and be transported by the plasma toward a target, affecting plasma-material interaction studies. Earlier work on material testing in Prototype-Materials Plasma Exposure eXperiment at ORNL revealed significant source impurity deposition on downstream targets. However, using a similar RF source, no target impurity deposition is observed in Plasma Interaction Surface Component Experimental Station (PISCES)-RF despite evidence of RF window erosion in the source region, thereby motivating the present work. Experimentally, using various magnetic field configurations upstream of the PISCES-RF plasma source and seeding titanium (Ti) impurities at various axial locations, impurity transport and deposition along the machine axis were investigated. It was found that Ti deposition was localized to the side of the plasma source where the Ti impurity was seeded. In contrast, aluminum (Al) deposition, originating from the sputtering of the helicon window, occurred predominantly upstream of the plasma source, suggesting an asymmetry in the axial transport of eroded RF window material. These observations suggest a stagnation of the parallel plasma flow immediately downstream of the plasma source, with impurity ions remaining unmagnetized near the source upstream. Al deposition in magnetic field-free regions in PISCES-RF indicates that sputtered Al impurities likely remained neutral due to their large ionization mean-free path under PISCES-RF conditions. Plasma modeling and simulation supported this, indicating that Al-neutrals transport toward the helicon source upstream for low electron density cases. It was found that the Larmor radius of the Al ions was greater than the plasma radius towards the source upstream and remained weakly magnetized in PISCES-RF, meaning that plasma source-born impurities are not efficiently entrained in the plasma flow. These findings provide critical insights into impurity transport in helicon plasma-based LPDs.

Original languageEnglish
Article number095015
JournalPlasma Physics and Controlled Fusion
Volume66
Issue number9
DOIs
StatePublished - Sep 2024

Funding

This work is supported by the DOE Office of Science, Office of Fusion Energy Science, under Contract Number DE-AC-5-00OR22725, and Cooperative Agreement No. DE-SC0022528. The authors wish to thank Dr Ted Biewer and Dr Jeremy Lore for their generous time in reviewing and discussing the article. The authors thank Dr. Jake Nichols for his insights and discussion about the WALLDYN code.

FundersFunder number
Office of Science
Fusion Energy SciencesDE-AC-5-00OR22725, DE-SC0022528
Fusion Energy Sciences

    Keywords

    • cusp magnetic field
    • erosion
    • helicon plasma source
    • impurity transport
    • rectified sheath voltage
    • sputtering

    Fingerprint

    Dive into the research topics of 'Impurity transport in PISCES-RF'. Together they form a unique fingerprint.

    Cite this