Abstract
Long wavelength turbulence as well as heat and momentum transport are significantly reduced in the DIII-D tokamak [Plasma Physics and Controlled Nuclear Fusion Research (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] as a result of neon seeding of a low confinement mode negative central shear discharge. Correspondingly, the energy confinement time increases by up to 80%. Fully saturated turbulence measurements near ρ = 0.7 (ρ = rla) in the wave number range 0.1≤k⊥ρs≤0.6, obtained with beam emission spectroscopy, exhibit a significant reduction of fluctuation power after neon injection. Fluctuation measurements obtained with far infrared scattering also show a reduction of turbulence in the core, while the Langmuir probe array measures reduced particle flux in the edge and scrape-off layer. Gyrokinetic linear stability simulations of these plasmas are qualitatively consistent, showing a reduction in the growth rate of ion temperature gradient driven modes for 0<k⊥ρs≤1.4, and nonlinear gyrokinetic simulations show a reduced saturated density fluctuation amplitude. The measured ωEXB shearing rate increased at ρ = 0.7, suggesting that impurity-induced growth rate reduction is acting synergistically with ωEXB shear to decrease turbulence and reduce anomalous transport.
Original language | English |
---|---|
Pages (from-to) | 1870-1877 |
Number of pages | 8 |
Journal | Physics of Plasmas |
Volume | 7 |
Issue number | 5 II |
DOIs | |
State | Published - May 2000 |
Event | 41st Annual Meeting of the Division of Plasma Physics of the Ameircan Physical Society - Seattle, WA, United States Duration: Nov 15 1999 → Nov 19 1999 |