Improving the accuracy and efficiency of quantum connected moments expansions

Daniel Claudino, Bo Peng, Nicholas P. Bauman, Karol Kowalski, Travis S. Humble

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

The still-maturing noisy intermediate-scale quantum technology faces strict limitations on the algorithms that can be implemented efficiently. In the realm of quantum chemistry, the variational quantum eigensolver (VQE) algorithm has become ubiquitous, with many variations. Alternatively, a promising new avenue has been unraveled by the quantum variants of techniques grounded on expansions of the moments of the Hamiltonian, notably the connected moments expansion (CMX) and the Peeters-Devreese-Soldatov (PDS) energy functional. Common to those approaches is that, upon preparing an approximate ground state used to compute the necessary moments, the accuracy of the estimated ground state energy depends on the degree of overlap between the prepared state and the true ground state. Thus, we use the ADAPT-VQE algorithm to test shallow circuit construction strategies for the purpose of increasing the overlap with the exact ground state, validated by the sizable accuracy improvement herein reported in the PDS and CMX ground state energies. We also show that we can take advantage of the fact that the terms to be measured are highly recurring in different moments, incurring a substantial reduction in the number of necessary measurements. By coupling this measurement caching with a threshold that determines whether a given term is to be measured based on its associated scalar coefficient, we observe a further reduction in the number of circuit implementations while allowing for tunable accuracy.

Original languageEnglish
Article number034012
JournalQuantum Science and Technology
Volume6
Issue number3
DOIs
StatePublished - Jul 2021

Funding

This work was supported by the ‘Embedding Quantum Computing into Many-body Frameworks for Strongly Correlated Molecular and Materials Systems’ project, which is funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, the Division of Chemical Sciences, Geosciences, and Biosciences. This work was also supported by the Quantum Science Center (QSC), a National Quantum Information Science Research Center of the U.S. Department of Energy (DOE). This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facilities supported by the Oak Ridge National Laboratory under Contract DE-AC05-00OR22725. This research used resources of the Compute and Data Environment for Science (CADES) at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This work was carried out at Oak Ridge National Laboratory, managed by UT-Battelle, LLC for the U.S. Department of Energy under contract DE-AC05-00OR22725.

Keywords

  • ADAPT-VQE
  • quantum chemistry
  • quantum moments expansions

Fingerprint

Dive into the research topics of 'Improving the accuracy and efficiency of quantum connected moments expansions'. Together they form a unique fingerprint.

Cite this