Abstract
Training Convolutional Neural Network (CNN) is a computationally intensive task, requiring efficient parallelization to shorten the execution time. Considering the ever-increasing size of available training data, the parallelization of CNN training becomes more important. Data-parallelism, a popular parallelization strategy that distributes the input data among compute processes, requires the mini-batch size to be sufficiently large to achieve a high degree of parallelism. However, training with large batch size is known to produce a low convergence accuracy. In image restoration problems, for example, the batch size is typically tuned to a small value between 16 ∼ 64, making it challenging to scale up the training. In this paper, we propose a parallel CNN training strategy that gradually increases the mini-batch size and learning rate at run-time. While improving the scalability, this strategy also maintains the accuracy close to that of the training with a fixed small batch size. We evaluate the performance of the proposed parallel CNN training algorithm with image regression and classification applications using various models and datasets.
Original language | English |
---|---|
Title of host publication | Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019 |
Editors | Chaitanya Baru, Jun Huan, Latifur Khan, Xiaohua Tony Hu, Ronay Ak, Yuanyuan Tian, Roger Barga, Carlo Zaniolo, Kisung Lee, Yanfang Fanny Ye |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 830-839 |
Number of pages | 10 |
ISBN (Electronic) | 9781728108582 |
DOIs | |
State | Published - Dec 2019 |
Event | 2019 IEEE International Conference on Big Data, Big Data 2019 - Los Angeles, United States Duration: Dec 9 2019 → Dec 12 2019 |
Publication series
Name | Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019 |
---|
Conference
Conference | 2019 IEEE International Conference on Big Data, Big Data 2019 |
---|---|
Country/Territory | United States |
City | Los Angeles |
Period | 12/9/19 → 12/12/19 |
Bibliographical note
Publisher Copyright:© 2019 IEEE.
Keywords
- Adaptive Batch Size
- Convolutional Neural Network
- Deep Learning
- Parallelization