Improved mesh based photon sampling techniques for neutron activation analysis

Eric Relson, Paul P.H. Wilson, Elliott D. Biondo

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

The design of fusion power systems requires analysis of neutron activation of large, complex volumes, and the resulting particles emitted from these volumes. Structured mesh-based discretization of these problems allows for improved modeling in these activation analysis problems. Finer discretization of these problems results in large computational costs, which drives the investigation of more efficient methods. Within an ad hoc subroutine of the Monte Carlo transport code MCNP, we implement sampling of voxels and photon energies for volumetric sources using the alias method. The alias method enables efficient sampling of a discrete probability distribution, and operates in 0(1) time, whereas the simpler direct discrete method requires 0(log(n)) time. By using the alias method, voxel sampling becomes a viable alternative to sampling space with the 0(1) approach of uniformly sampling the problem volume. Additionally, with voxel sampling it is straightforward to introduce biasing of volumetric sources, and we implement this biasing of voxels as an additional variance reduction technique that can be applied. We verify our implementation and compare the alias method, with and without biasing, to direct discrete sampling of voxels, and to uniform sampling. We study the behavior of source biasing in a second set of tests and find trends between improvements and source shape, material, and material density. Overall, however, the magnitude of improvements from source biasing appears to be limited. Future work will benefit from the implementation of efficient voxel sampling - particularly with conformai unstructured meshes where the uniform sampling approach cannot be applied.

Original languageEnglish
Title of host publicationInternational Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2013
Pages938-949
Number of pages12
StatePublished - 2013
Externally publishedYes
EventInternational Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2013 - Sun Valley, ID, United States
Duration: May 5 2013May 9 2013

Publication series

NameInternational Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2013
Volume2

Conference

ConferenceInternational Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2013
Country/TerritoryUnited States
CitySun Valley, ID
Period05/5/1305/9/13

Keywords

  • Activation
  • Alias method
  • Monte Carlo
  • R2S
  • Source biasing

Fingerprint

Dive into the research topics of 'Improved mesh based photon sampling techniques for neutron activation analysis'. Together they form a unique fingerprint.

Cite this