Implementation of two-phase gas transport into VERA for molten salt reactor analysis

Zack Taylor, Robert Salko, Aaron M. Graham, Benjamin S. Collins, G. Ivan Maldonado

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Molten salt reactors (MSRs) are a class of next-generation nuclear reactors that have received recent industrial and research interest. A generalized species transport solver was implemented in the Virtual Environment for Reactor Applications (VERA) computing suite to extend this tool to analyze liquid-fueled MSRs. This core simulator has been extended to model the transport of fission product gases into a collection of circulating gas bubbles with the purpose of removing the gases. This paper presents the governing species transport equation, along with various nuclear source terms. Development of the source term for phase migration is discussed, along with a simplified interfacial area tracking method. Finally, a case study on a simplified MSR loop is presented in which modeling parameters were varied to assess their impact on gas removal. The steady state results show that parameters such as bubble diameter, gas injection rate and mass transfer coefficient have a low to moderate effect on the fraction of xenon in the core region. Removal efficiency has the greatest effect on the fraction in the core region. After the pump bowl, bubble diameter has a minor effect on the fraction of xenon in the gas void. These results point out that increasing parameters such as mass transfer coefficient, gas injection rate, and removal efficiency drives the xenon into the circulating gas void, while decreasing bubble diameter also drives xenon into the gas void by increasing interfacial area.

Original languageEnglish
Article number108672
JournalAnnals of Nuclear Energy
Volume165
DOIs
StatePublished - Jan 2022

Funding

Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan)

Keywords

  • Gas sparging
  • Molten salt reactors
  • Species transport
  • VERA

Fingerprint

Dive into the research topics of 'Implementation of two-phase gas transport into VERA for molten salt reactor analysis'. Together they form a unique fingerprint.

Cite this