Impacts of divalent cations (Mg2+ and Ca2+) on PFAS bioaccumulation in freshwater macroinvertebrates representing different foraging modes

Asa J. Lewis, Xiaoyan Yun, Max G. Lewis, Erica R. McKenzie, Daniel E. Spooner, Marie J. Kurz, Rominder Suri, Christopher M. Sales

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Per- and polyfluoroalkyl substances (PFAS) have extensively contaminated freshwater aquatic ecosystems where they can be transported in water and partition to sediment and biota. In this paper, three freshwater benthic macroinvertebrates with different foraging modes were exposed to environmentally relevant concentrations of eight perfluoroalkyl carboxylates (PFCA), three perfluoroalkyl sulfonates (PFSA), and three fluorotelomer sulfonates (FTS) at varying divalent cation concentrations of magnesium (Mg2+) and calcium (Ca2+). Divalent cations can impact PFAS partitioning to solids, especially to sediments, at higher concentrations. Sediment dwelling worms (Lumbriculus variegatus), epibenthic grazing snails (Physella acuta), and sediment-dwelling filter-feeding bivalves (Elliptio complanata) were selected due to their unique foraging modes. Microcosms were composed of synthetic sediment, culture water, macroinvertebrates, and PFAS and consisted of a 28-day exposure period. L. variegatus had significantly higher PFAS bioaccumulation than P. acuta and E. complanata, likely due to higher levels of interactions with and ingestion of the contaminated sediment. “High Mg2+” (7.5 mM Mg2+) and “High Ca2+” (7.5 mM Ca2+) conditions generally had statistically higher bioaccumulation factors (BAF) than the “Reference Condition” (0.2 mM Ca2+ and 0.2 mM Mg2+) for PFAS with perfluorinated chain lengths greater than eight carbons. Long-chain PFAS dominated the PFAS profiles of the macroinvertebrates for all groups of compounds studied (PFCA, PFSA, and FTS). These results indicate that the study organism has the greatest impact on bioaccumulation, although divalent cation concentration had observable impacts between organisms depending on the environmental conditions. Elevated cation concentrations in the microcosms led to significantly greater bioaccumulation in the test organisms compared to the experimental reference conditions for long-chain PFAS.

Original languageEnglish
Article number121938
JournalEnvironmental Pollution
Volume331
DOIs
StatePublished - Aug 15 2023

Funding

This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The publisher acknowledges the US government license to provide public access under the DOE Public Access Plan ( https://energy.gov/downloads/doe-public-access-plan ). This work was supported by the Strategic Environmental Research and Development Program ( ER19-1032 ).

FundersFunder number
U.S. Department of Energy
Strategic Environmental Research and Development ProgramER19-1032

    Keywords

    • Bioavailability
    • Environmental relevance
    • Fate and transport
    • PFAS profiles
    • Uptake mechanism

    Fingerprint

    Dive into the research topics of 'Impacts of divalent cations (Mg2+ and Ca2+) on PFAS bioaccumulation in freshwater macroinvertebrates representing different foraging modes'. Together they form a unique fingerprint.

    Cite this