Abstract
Dielectric spectroscopy, rheology, and differential scanning calorimetry were employed to study the effect of chain-end hydrogen bonding on the dynamics of hydroxyl-terminated polydimethylsiloxane. We demonstrate that hydrogen bonding has a strong influence on both segmental and slower dynamics in the systems with low molecular weights. In particular, the decrease in the chain length leads to an increase of the glass transition temperature, viscosity, and fragility index, at variance with the usual behavior of nonassociating polymers. The supramolecular association of hydroxyl-terminated chains leads to the emergence in dielectric and mechanical relaxation spectra of the so-called Debye process traditionally observed in monohydroxy alcohols. Our analysis suggests that the hydroxyl-terminated PDMS oligomers may associate in brush-like or chain-like structures, depending on the size of their covalent chains. The effective length of the linear-associated chains was estimated from the rheological measurements.
Original language | English |
---|---|
Pages (from-to) | 3138-3147 |
Number of pages | 10 |
Journal | Macromolecules |
Volume | 49 |
Issue number | 8 |
DOIs | |
State | Published - Apr 26 2016 |
Funding
This work was supported by NSF Polymer program (Grant DMR-1408811).
Funders | Funder number |
---|---|
National Science Foundation | DMR-1408811 |