Abstract
In recent years, highly parallelized simulations of blood flow resolving individual blood cells have been demonstrated. Simulating such dense suspensions of deformable particles in flow often involves a partitioned fluid-structure interaction (FSI) algorithm, with separate solvers for Eulerian fluid and Lagrangian cell grids, plus a solver - e.g., immersed boundary method - for their interaction. Managing data motion in parallel FSI implementations is increasingly important, particularly for inhomogeneous systems like vascular geometries. In this study, we evaluate the influence of Eulerian and Lagrangian halo exchanges on efficiency and scalability of a partitioned FSI algorithm for blood flow. We describe an MPI+OpenMP implementation of the immersed boundary method coupled with lattice Boltzmann and finite element methods. We consider how communication and recomputation costs influence the optimization of halo exchanges with respect to three factors: immersed boundary interaction distance, cell suspension density, and relative fluid/cell solver costs.
Original language | English |
---|---|
Title of host publication | Computational Science – ICCS 2019 - 19th International Conference, Proceedings |
Editors | João M.F. Rodrigues, Pedro J.S. Cardoso, Jânio Monteiro, Roberto Lam, Valeria V. Krzhizhanovskaya, Michael H. Lees, Peter M.A. Sloot, Jack J. Dongarra |
Publisher | Springer Verlag |
Pages | 441-455 |
Number of pages | 15 |
ISBN (Print) | 9783030227333 |
DOIs | |
State | Published - 2019 |
Event | 19th International Conference on Computational Science, ICCS 2019 - Faro, Portugal Duration: Jun 12 2019 → Jun 14 2019 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 11536 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 19th International Conference on Computational Science, ICCS 2019 |
---|---|
Country/Territory | Portugal |
City | Faro |
Period | 06/12/19 → 06/14/19 |
Funding
Keywords: Red blood cell · Immersed boundary method · Parallel computing This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
Keywords
- Immersed boundary method
- Parallel computing
- Red blood cell