Abstract
The exciton polariton (EP) is a half-light and half-matter quasiparticle that is promising for exploring both fundamental quantum phenomena as well as photonic applications. Van der Waals materials, such as transition-metal dichalcogenide (TMD), emerge as a promising nanophotonics platform due to its support of long propagative EPs even at room temperature. However, real-space studies have been limited to bulk crystal waveguides with a thickness no less than 60 nm. Here we report the nano-optical imaging of the transverse-electric EPs in WSe2 nanoflakes down to a few atomic layers, which can be turned on and off by tuning the polarization state of the excitation laser. Unlike previously studied transverse-magnetic modes that exist only in bulk TMD waveguides, we found that the transverse-electric EPs could reside in ultrathin WSe2 samples, owing to the alignment of the electric field with the in-plane dipole orientation of two-dimensional excitons. Furthermore, we show that the EP wavelength and propagation length can be largely controlled by varying laser energy and sample thickness. These findings open opportunities to realize near-infrared polaritonic devices and circuits truly at the atomically thin limit.
Original language | English |
---|---|
Article number | 121301 |
Journal | Physical Review B |
Volume | 100 |
Issue number | 12 |
DOIs | |
State | Published - Sep 4 2019 |
Bibliographical note
Publisher Copyright:© 2019 American Physical Society.