Abstract
Internal dosimetry of diagnostic nuclear medicine requires biokinetic and anatomical models to estimate the radiation exposure from a radiopharmaceutical. Biokinetic models predict the uptake, turnover, and retention of the radionuclide in organs and tissues, while anatomical models estimate energy absorption from decay using computational phantoms. To make more accurate predictions of biokinetic transfer, the International Commission on Radiological Protection (ICRP) has introduced a new compartmental framework, based on a systemic blood model, which can be used to estimate the transfer of the administered radionuclides between organs and tissues. The ICRP Task Group 36 (TG-36) is developing the biokinetic models and dosimetric calculations for radiopharmaceuticals for the ICRP. IDAC-BioDose integrates compartmental modeling and IDAC-Dose2.2. For the biokinetic predictions, transfer rates are generated through empirical data by curve fitting. IDAC-BioDose is benchmarked with SAAMII and DCAL and is used by ICRP TG-36 to revise the biokinetics and dosimetry for ICRP Publ. 128. This comprehensive software expedites absorbed dose and effective dose assessments in the field of diagnostic nuclear medicine.
| Original language | English |
|---|---|
| Pages (from-to) | 905-910 |
| Number of pages | 6 |
| Journal | Radiation Protection Dosimetry |
| Volume | 201 |
| Issue number | 13-14 |
| DOIs | |
| State | Published - Sep 1 2025 |
Funding
This project was partly funded by the Swedish Radiation Safety Authority (grant number: SSM2018-2163).