Hyperparameter Optimization in Binary Communication Networks for Neuromorphic Deployment

Maryam Parsa, Catherine D. Schuman, Prasanna Date, Derek C. Rose, Bill Kay, J. Parker Mitchell, Steven R. Young, Ryan Dellana, William Severa, Thomas E. Potok, Kaushik Roy

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Training neural networks for neuromorphic deployment is non-trivial. There have been a variety of approaches proposed to adapt back-propagation or back-propagation-like algorithms appropriate for training. Considering that these networks often have very different performance characteristics than traditional neural networks, it is often unclear how to set either the network topology or the hyperparameters to achieve optimal performance. In this work, we introduce a Bayesian approach for optimizing the hyperparameters of an algorithm for training binary communication networks that can be deployed to neuromorphic hardware. We show that by optimizing the hyperparameters on this algorithm for each dataset, we can achieve improvements in accuracy over the previous state-of-the-art for this algorithm on each dataset (by up to 15 percent). This jump in performance continues to emphasize the potential when converting traditional neural networks to binary communication applicable to neuromorphic hardware.

Original languageEnglish
Title of host publication2020 International Joint Conference on Neural Networks, IJCNN 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728169262
DOIs
StatePublished - Jul 2020
Event2020 International Joint Conference on Neural Networks, IJCNN 2020 - Virtual, Glasgow, United Kingdom
Duration: Jul 19 2020Jul 24 2020

Publication series

NameProceedings of the International Joint Conference on Neural Networks

Conference

Conference2020 International Joint Conference on Neural Networks, IJCNN 2020
Country/TerritoryUnited Kingdom
CityVirtual, Glasgow
Period07/19/2007/24/20

Funding

This material is also based in part upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, under contract number DE-AC05-00OR22725, and in part by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC. The research was funded in part by Center for Brain-Inspired Computing Enabling Autonomous Intelligence (C-BRIC), one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by DARPA, the National Science Foundation, Intel Corporation and Vannevar Bush Faculty Fellowship. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Hon-eywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. Notice: This manuscript has been authored in part by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Keywords

  • Bayesian optimization
  • hyperparameter optimization
  • neural networks
  • neuromorphic

Fingerprint

Dive into the research topics of 'Hyperparameter Optimization in Binary Communication Networks for Neuromorphic Deployment'. Together they form a unique fingerprint.

Cite this