TY - GEN
T1 - Hydrothermal corrosion of SiC materials for accident tolerant fuel cladding with and without mitigation coatings
AU - Raiman, Stephen S.
AU - Ang, Caen
AU - Doyle, Peter
AU - Terrani, Kurt A.
N1 - Publisher Copyright:
© 2019, The Minerals, Metals & Materials Society.
PY - 2019
Y1 - 2019
N2 - As a candidate material for accident-tolerant fuel cladding for light water reactors (LWR), SiC f –SiC composite materials possess many attractive properties. However, prior work has shown that SiC is susceptible to aqueous dissolution in LWR coolant environments. To address this issue, candidate coatings have been developed to inhibit dissolution. For this study, CVD SiC samples were prepared with Cr, CrN, TiN, ZrN, NiCr, and Ni coatings. Uncoated SiC and SiC f –SiC samples were also prepared. The samples were exposed for 400 h in 288 ℃ water with 2 wppm DO in a constantly-refreshing autoclave to simulate BWR–NWC. Cr and Ni coated samples lost less mass than the uncoated SiC sample, indicating an improvement in performance. The CrN coating resisted oxidation, but some of the coating was lost due to poor adhesion. The TiN coated sample gained significant mass due to oxidation of the coating. ZrN and NiCr coatings showed significant corrosion attack. SiC f –SiC ceramic matrix composite materials dissolved much faster than the CVD SiC sample, demonstrating the need for mitigation coatings if CMCs are to be used in LWRs. This work demonstrates the promise of Cr, Ni and CrN coatings for corrosion mitigation in LWRs, and shows that NiCr and ZrN are not promising coating materials.
AB - As a candidate material for accident-tolerant fuel cladding for light water reactors (LWR), SiC f –SiC composite materials possess many attractive properties. However, prior work has shown that SiC is susceptible to aqueous dissolution in LWR coolant environments. To address this issue, candidate coatings have been developed to inhibit dissolution. For this study, CVD SiC samples were prepared with Cr, CrN, TiN, ZrN, NiCr, and Ni coatings. Uncoated SiC and SiC f –SiC samples were also prepared. The samples were exposed for 400 h in 288 ℃ water with 2 wppm DO in a constantly-refreshing autoclave to simulate BWR–NWC. Cr and Ni coated samples lost less mass than the uncoated SiC sample, indicating an improvement in performance. The CrN coating resisted oxidation, but some of the coating was lost due to poor adhesion. The TiN coated sample gained significant mass due to oxidation of the coating. ZrN and NiCr coatings showed significant corrosion attack. SiC f –SiC ceramic matrix composite materials dissolved much faster than the CVD SiC sample, demonstrating the need for mitigation coatings if CMCs are to be used in LWRs. This work demonstrates the promise of Cr, Ni and CrN coatings for corrosion mitigation in LWRs, and shows that NiCr and ZrN are not promising coating materials.
KW - Accident-tolerant fuel
KW - BWR–NWC
KW - Coatings
KW - Corrosion
KW - Silicon carbide
UR - http://www.scopus.com/inward/record.url?scp=85064064420&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-04639-2_98
DO - 10.1007/978-3-030-04639-2_98
M3 - Conference contribution
AN - SCOPUS:85064064420
SN - 9783030046385
SN - 9783030046392
SN - 9783319515403
SN - 9783319651354
SN - 9783319728520
SN - 9783319950211
T3 - Minerals, Metals and Materials Series
SP - 1475
EP - 1483
BT - Minerals, Metals and Materials Series
PB - Springer International Publishing
T2 - 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors 2019
Y2 - 18 August 2019 through 22 August 2019
ER -