Hydrothermal corrosion of SiC materials for accident tolerant fuel cladding with and without mitigation coatings

Stephen S. Raiman, Caen Ang, Peter Doyle, Kurt A. Terrani

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

17 Scopus citations

Abstract

As a candidate material for accident-tolerant fuel cladding for light water reactors (LWR), SiCf–SiC composite materials possess many attractive properties. However, prior work has shown that SiC is susceptible to aqueous dissolution in LWR coolant environments. To address this issue, candidate coatings have been developed to inhibit dissolution. For this study, CVD SiC samples were prepared with Cr, CrN, TiN, ZrN, NiCr, and Ni coatings. Uncoated SiC and SiCf–SiC samples were also prepared. The samples were exposed for 400 h in 288 ℃ water with 2 wppm DO in a constantly-refreshing autoclave to simulate BWR–NWC. Cr and Ni coated samples lost less mass than the uncoated SiC sample, indicating an improvement in performance. The CrN coating resisted oxidation, but some of the coating was lost due to poor adhesion. The TiN coated sample gained significant mass due to oxidation of the coating. ZrN and NiCr coatings showed significant corrosion attack. SiCf–SiC ceramic matrix composite materials dissolved much faster than the CVD SiC sample, demonstrating the need for mitigation coatings if CMCs are to be used in LWRs. This work demonstrates the promise of Cr, Ni and CrN coatings for corrosion mitigation in LWRs, and shows that NiCr and ZrN are not promising coating materials.

Original languageEnglish
Title of host publicationProceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors
EditorsMichael Wright, Denise Paraventi, John H. Jackson
PublisherSpringer International Publishing
Pages259-267
Number of pages9
ISBN (Print)9783319684536
DOIs
StatePublished - 2018
Event18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, 2017 - Portland, United States
Duration: Aug 13 2017Aug 17 2017

Publication series

NameMinerals, Metals and Materials Series
VolumePart F11
ISSN (Print)2367-1181
ISSN (Electronic)2367-1696

Conference

Conference18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, 2017
Country/TerritoryUnited States
CityPortland
Period08/13/1708/17/17

Funding

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00 OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/ downloads/doe-public-access-plan).

FundersFunder number
U.S. Department of Energy

    Keywords

    • Accident-tolerant fuel
    • BWR–NWC
    • Coatings
    • Corrosion
    • Silicon carbide

    Fingerprint

    Dive into the research topics of 'Hydrothermal corrosion of SiC materials for accident tolerant fuel cladding with and without mitigation coatings'. Together they form a unique fingerprint.

    Cite this