TY - GEN
T1 - Hydrogen spillover
T2 - 237th National Meeting and Exposition of the American Chemical Society, ACS 2009
AU - Contescu, Cristian I.
AU - Bhat, Vinay V.
AU - Gallego, Nidia C.
PY - 2009
Y1 - 2009
N2 - Dissociative adsorption of hydrogen on catalyst sites followed by surface diffusion (spillover) to a carbon support was first reported for Pt-carbon catalysts (Robell, 1964) and was soon accepted as a valid step of numerous catalytic reactions. However, the concept of metal-assisted hydrogen storage (Schwarz, 1988) based on spillover entered much later the hydrogen community (Lueking and Yang, 2002) and is gaining recognition slowly as an alternate approach for enhancing hydrogen storage capacity of microporous materials for fuel-cell powered vehicles. This talk will analyze the significance and limits of the spillover mechanism for adsorptive storage of hydrogen, with examples of enhanced hydrogen uptake on Pd-containing activated carbon fibers. Evidence of the atomic nature of spilt-over hydrogen will be presented based on experimental results from inelastic neutron spectroscopy studies. Research sponsored by the Division of Materials Sciences and Engineering, U.S. Department of Energy under contract with UT-Battelle, LLC.
AB - Dissociative adsorption of hydrogen on catalyst sites followed by surface diffusion (spillover) to a carbon support was first reported for Pt-carbon catalysts (Robell, 1964) and was soon accepted as a valid step of numerous catalytic reactions. However, the concept of metal-assisted hydrogen storage (Schwarz, 1988) based on spillover entered much later the hydrogen community (Lueking and Yang, 2002) and is gaining recognition slowly as an alternate approach for enhancing hydrogen storage capacity of microporous materials for fuel-cell powered vehicles. This talk will analyze the significance and limits of the spillover mechanism for adsorptive storage of hydrogen, with examples of enhanced hydrogen uptake on Pd-containing activated carbon fibers. Evidence of the atomic nature of spilt-over hydrogen will be presented based on experimental results from inelastic neutron spectroscopy studies. Research sponsored by the Division of Materials Sciences and Engineering, U.S. Department of Energy under contract with UT-Battelle, LLC.
UR - http://www.scopus.com/inward/record.url?scp=78649511797&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:78649511797
SN - 9780841224414
T3 - ACS National Meeting Book of Abstracts
BT - American Chemical Society - 237th National Meeting and Exposition, ACS 2009, Abstracts of Scientific Papers
Y2 - 22 March 2009 through 26 March 2009
ER -