Hydration effects on membrane structure probed by single molecule orientations

Heath A. Huckabay, Robert C. Dunn

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Single molecule fluorescence measurements are used to probe the structural changes in glass-supported DPPC bilayers as a function of relative humidity (RH). Defocused polarized total internal reflection fluorescence microscopy is employed to determine the three-dimensional orientation of the fluorescent lipid analogue BODIPY-PC, doped into DPPC membranes in trace amounts. Supported DPPC bilayers formed using vesicle fusion and Langmuir-Blodgett/Langmuir-Schäfer (LB/LS) transfer are compared and show similar trends as a function of relative humidity. Population histograms of the emission dipole tilt angle reveal bimodal distributions as observed previously for BODIPY-PC in DPPC. These distributions are dominated by large populations of BODIPY-PC molecules with emission dipoles oriented parallel (≥81°) and normal (≥10°) to the membrane plane, with less than 25% oriented at intermediate tilts. As the relative humidity is increased from 13% to 95%, the population of molecules oriented normal to the surface decreases with a concomitant increase in those oriented parallel to the surface. The close agreement in trends observed for bilayers formed from vesicle fusion and LB/LS transfer supports the assignment of an equivalent surface pressure of 23 mN/m for bilayers formed from vesicle fusion. At each RH condition, a small population of BODIPY-PC dye molecules are laterally mobile in both bilayer preparations. This population exponentially increases with RH but never exceeds 6% of the total population. Interestingly, even under conditions where there is little lateral diffusion, fluctuations in the single molecule orientations can be observed which suggests there is appreciable freedom in the acyl chain region. Dynamic measurements of single molecule orientation changes, therefore, provide a new view into membrane properties at the single molecule level.

Original languageEnglish
Pages (from-to)2658-2666
Number of pages9
JournalLangmuir
Volume27
Issue number6
DOIs
StatePublished - Mar 15 2011
Externally publishedYes

Fingerprint

Dive into the research topics of 'Hydration effects on membrane structure probed by single molecule orientations'. Together they form a unique fingerprint.

Cite this