Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production

David Peris, Ryan V. Moriarty, William G. Alexander, Emily Clare Baker, Kayla Sylvester, Maria Sardi, Quinn K. Langdon, Diego Libkind, Qi Ming Wang, Feng Yan Bai, Jean Baptiste Leducq, Guillaume Charron, Christian R. Landry, José Paulo Sampaio, Paula Gonçalves, Katie E. Hyma, Justin C. Fay, Trey K. Sato, Chris Todd Hittinger

Research output: Contribution to journalArticlepeer-review

54 Scopus citations

Abstract

Background: Lignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects have investigated lignocellulosic biomass fermentation by the baker's yeast Saccharomyces cerevisiae. Most projects have taken synthetic biological approaches or have explored naturally occurring diversity in S. cerevisiae to enhance stress tolerance, xylose consumption, or ethanol production. Despite these efforts, improved strains with new properties are needed. In other industrial processes, such as wine and beer fermentation, interspecies hybrids have combined important traits from multiple species, suggesting that interspecies hybridization may also offer potential for biofuel research. Results: To investigate the efficacy of this approach for traits relevant to lignocellulosic biofuel production, we generated synthetic hybrids by crossing engineered xylose-fermenting strains of S. cerevisiae with wild strains from various Saccharomyces species. These interspecies hybrids retained important parental traits, such as xylose consumption and stress tolerance, while displaying intermediate kinetic parameters and, in some cases, heterosis (hybrid vigor). Next, we exposed them to adaptive evolution in ammonia fiber expansion-pretreated corn stover hydrolysate and recovered strains with improved fermentative traits. Genome sequencing showed that the genomes of these evolved synthetic hybrids underwent rearrangements, duplications, and deletions. To determine whether the genus Saccharomyces contains additional untapped potential, we screened a genetically diverse collection of more than 500 wild, non-engineered Saccharomyces isolates and uncovered a wide range of capabilities for traits relevant to cellulosic biofuel production. Notably, Saccharomyces mikatae strains have high innate tolerance to hydrolysate toxins, while some Saccharomyces species have a robust native capacity to consume xylose. Conclusions: This research demonstrates that hybridization is a viable method to combine industrially relevant traits from diverse yeast species and that members of the genus Saccharomyces beyond S. cerevisiae may offer advantageous genes and traits of interest to the lignocellulosic biofuel industry.

Original languageEnglish
Article number78
JournalBiotechnology for Biofuels
Volume10
Issue number1
DOIs
StatePublished - Mar 27 2017
Externally publishedYes

Funding

This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE‑FC02‑07ER64494). Material related to yeast iso‑ lation and biodiversity is based upon work supported by the National Science Foundation under Grant No. DEB‑1253634 (to CTH), USDA National Institute of Food and Agriculture Hatch Project 1003258 (to CTH), ANPCyT Grant PICT 2542 (to DL), CONICET Grant PIP 0392 (to DL), UNComahue Grant B171 (to DL), Grant No. 31470150 from National Natural Science Foundation of China (to FYB), a NSERC Discovery Grant (to CRL), and National Institutes of Health Grant No. GM080669 (to JCF). This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE‑1256259 to MS and QKL; QKL was also supported by the Predoctoral Training Program in Genetics, funded by the National Institutes of Health (5 T32 GM007133‑40); KEH was supported by a NIH Genome Analysis Training Grant. CRL holds the Canada Research Chair in Evolutionary Cell and Systems Biology. CTH is a Pew Scholar in the Biomedical Sciences, supported by the Pew Charitable Trusts.

FundersFunder number
UNComahueB171, 31470150
USDA National Institute of Food and Agriculture Hatch
National Science Foundation1003258, DEB‑1253634
National Institutes of HealthGM080669, 5 T32 GM007133‑40, DGE‑1256259
Pew Charitable Trusts
Office of ScienceBER DE‑FC02‑07ER64494
Great Lakes Bioenergy Research Center
Natural Sciences and Engineering Research Council of Canada
National Natural Science Foundation of China
Consejo Nacional de Investigaciones Científicas y TécnicasPIP 0392
Agencia Nacional de Promoción Científica y TecnológicaPICT 2542

    Keywords

    • AFEX-pretreated corn stover hydrolysate (ACSH)
    • Ammonia fiber expansion (AFEX)
    • Biodiversity
    • Bioethanol
    • Hybridization
    • Hydrolysate toxins
    • Saccharomyces
    • Xylose

    Fingerprint

    Dive into the research topics of 'Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production'. Together they form a unique fingerprint.

    Cite this